
A Preliminary Performance Model for Optimizing Software Packet Processing Pipelines
Ankit Bhardwaj, Atul Shree, Bhargav Reddy V and Sorav Bansal

Department of Computer Science and Engineering, Indian Institute of Technology Delhi

Motivation and Objectives

‚Newer functionalities are being developed
over time with increasing popularity of SDN.
‚Researchers are developing DSLs to make the
task easier. However, ease of programming
doesn’t guarantee application performance.

Goal: Develop a compiler that can automatically
map a high-level specification to an underlying
machine architecture in an optimal way.

Compilation Phases

Figure: Compilation phases

Applications written in P4[1] are given as the
input to P4C[2] compiler and the compiler
generated DPDK[3] based Applications. DPDK[3]
application is compiled using gcc to generate
the target binary.

Packet Processing Pipeline

Figure: Packet Processing Pipeline

* Exploit DMA bandwidth between NIC and
Main Memory labeled 1○ in Figure

* Exploit Memory Level Parallelism between
CPU and Memory labeled 2○ in Figure

Compiler Transformations related to Batching, Sub-Batching and Prefetching

sub app {
for (i = 0; i < B; i++) {
p = read_from_input_NIC();
p = process_packet(p);
write_to_output_NIC(p);

}

Ö

sub app {
for (i = 0; i < B; i++)
p[i] = read_from_input_NIC();

for (i = 0; i < B; i++)
p[i] = process_packet(p[i]);

for (i = 0; i < B; i++)
write_to_output_NIC(p[i]);

}

Loop Fission[4] Transformation
for Batching

sub process_packet(p) {
for (i = 0; i < B; i++) {
t1 = lookup_table1(p[i]);
t2 = lookup_table2(p[i], t1);
. . .

} }

Ö

sub process_packet(p) {
for (i = 0; i < B; i+=b) {
for (j = i; j < i+b; j++)
t1[j-i] = lookup_table1(p[j]);

for (j = i; j < i+b; j++)
t1[j-i] = lookup_table2(p[j], t1[j-i]);

. . .
} }

Loop Fission[4] Transformation
for Sub-Batching

sub hash_lookup() {
for(i=0; i<B; i++){
key_hash[i] = hash_compute(key[i]);
prefetch(bucket(key-hash[i]));

}
for(i=0; i < B; i++){
val[j] = hash_lookup(key_hash[j]);

} }
Ö

sub hash_lookup() {
for(i = 0; i < B; i += b){
for(j = i; j < i + b; j++){
key_hash[i] = hash_compute(key[i]);
prefetch(bucket(key-hash[i]));

}
for(j = i; j < i + b; j++){
val[j] = hash_lookup(key_hash[j]);

} } }

Use of Sub-Batching for
Prefetching

Performance Model
‚ Let the service rate of CPU, CPU-Memory, I/O-Memory interface be c, m, d.
‚Throughput of the application will bemin(c, m, d).
‚ The value ofm will vary with change in b and will follow some fmempm, bq.
‚DMA interface is not linearly scalable and d increases based on some function fdmapd, Bq.
‚Throughput “ minpc, fmempm, bq, fdmaqpd, Bqq

Experiments and Results

Figure: Effect of Batching and Prefetching Figure: Sensitivity of Throughput to B.
Solid line b = B and dotted lines b = 1.

Figure: Sensitivity of Throughput to b.
Batch Size B = 128 for these experiments.

Discussion
‚Use of Batching(B) to exploit NIC-Memory
Parallelism.
‚Use of Prefetching to exploit MLP at
Memory-CPU interface in the pipeline.
‚Use of sub-batch(b) to adjust the prefetch
distance.
‚Run the applications to find optimal value of b
and B.
‚ Input b and B to the compiler to generate
optimized DPDK application.

Future Work
‚Perform more fine-grained experiments to
gain better understanding of underlying
hardware.
‚ Explore optimizations other than scheduling
and select the ones best suited to an
application.

References
[1] P4: Programming protocol-independent packet

processors.
SIGCOMM Comput. Commun. Rev., 44(3), July 2014.

[2] High speed packet forwarding compiled from protocol
independent data plane specifications.
SIGCOMM ’16.

[3] Intel Data Plane Development Kit.
http://dpdk.org/.

[4]Optimizing supercompilers for supercomputers.
PhD thesis, Univ. of Illinois,Urbana, IL, Jan 1982.

1/1

http://dpdk.org/

