
A Preliminary Performance Model for Optimizing
Software Packet Processing Pipelines

Ankit Bhardwaj, Atul Shree, Bhargav Reddy V and Sorav Bansal
Indian Institute of Technology Delhi

APSys 2017

Software based Packet Processing
● Increasing popularity of Software Defined Networks(SDN).

○ Flexibility
○ Develop and test new functionality
○ Use of commodity hardware

● Programming Environment
○ Imperative languages, ex: C
○ Stream programming languages, ex: DSLs like P4 and Click

Problem Statement

● Manual optimizations are time consuming and repetitive
● Rapid changes in the architecture makes the problem harder

Ease of
Programming Performance

Contradictory
 Goals

Can we bridge this gap with the help of a compiler?

Motivation
● A compiler needs a performance model of underlying system to make

optimizations and code transformations.
● Focus is on scheduling and prefetching related optimizations
● Apply optimizations for single CPU core

○ Multi-queue support in NIC enables linear scalability

Up to 57% performance gain with these optimizations

Background
● P4 (Programming Protocol Independent Packet Processing)

○ A DSL for software packet processing

○ Active community

○ Adoption is growing swiftly in industry and academia

● P4C
○ A prototype compiler for P4 which generates DPDK based C code
○ One of the early compiler for P4

● Intel DPDK
○ A set of libraries and drivers for fast packet processing

Example in P4

header_type ethernet_t {
fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;
}

}

table dmac {
reads {
 ethernet.dstAddr : exact;
}
actions {forward; bcast;}
size : 512;

}

action forward(port) {
modify_field(standard_metadata.egress_port, port);

}

action bcast() {
modify_field(standard_metadata.egress_port, 100);

}

Input -> Parser -> Table -> Match -> Action -> Output

Compilation Phases

P4 Program Intermediate Rep.

Provided by
P4 developers

Core code using
HAL calls

Hardware
Abstraction

Library in DPDK

SwitchHLIR P4C GCC

Pipeline related
optimizations

Standard GCC
optimizations

Superscalar out-of-order execution
Schedule of memory accesses

A Dep BBDep A
Re-
Order
Buffer

MEM

CPU

CPU Stalled

A Serviced

CPU Stalled

B Serviced

Superscalar out-of-order execution
Schedule of memory accesses

A Dep BB Dep A
Re-
Order
Buffer

MEM

CPU

A Serviced B Serviced

CPU active at all times

Packet Processing Pipeline

Packet

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet Processing Pipeline

Packet

Packet Processing Pipeline

1. Exploit IO Parallelism between NIC and Main Memory
2. Exploit Memory Parallelism between CPU and Memory

Packet Processing Pipeline

1. Improvement due to IO parallelism 20% - 57%
2. Additional improvement of 21% - 23% due to memory parallelism

NIC-Memory I/O Parallelism

NIC RX Queue / MEMInput

Batching

To
Processing

NIC-Memory I/O Parallelism

NIC RX Queue / MEMInput

Batching

To
Processing

NIC-Memory I/O Parallelism

NIC RX Queue / MEMInput

Batching

To
Processing

NIC-Memory I/O Parallelism

NIC RX Queue / MEMInput

Batching

To
Processing

NIC-Memory I/O Parallelism

NIC RX Queue / MEMInput

Batching

To
Processing

Batching(B) == Loop Fission
sub app {
 for(i=0; i<B; i++){

 p=read_from_input_NIC();
 p = process_packet(p);
 write_to_output_NIC(p);

 }
}

Receive

Process

Transmit

Batching(B) == Loop Fission
sub app {
 for(i=0; i<B; i++){

 p=read_from_input_NIC();
 p = process_packet(p);
 write_to_output_NIC(p);

 }
}

sub app {
 for(i=0; i<B; i++)

p[i]=read_from_input_NIC();

 for(i=0; i<B; i++)
 p[i] = process_packet(p[i]);

 for(i=0; i<B; i++)
 write_to_output_NIC(p[i]);

}

IO, CPU and Memory work in parallel

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Memory Level Parallelism

MEM CPU

From RX Queue To TX Queue

Loop Fission for Sub-Batching(b)
sub process_packet(p) {
 for(i=0; i<B; i++){

 t1 = lookup_table1(p[i]);
 t2 = lookup_table2(p[i],t1);
 …

 }
}

First Lookup

Dependent Lookup

Loop Fission for Sub-Batching(b)
sub process_packet(p) {
 for(i=0; i<B; i++){

 t1 = lookup_table1(p[i]);
 t2 = lookup_table2(p[i],t1);
 …

 }
}

sub process_packet(p) {
 for(i=0; i<B; i+=b){
 for(j=i; j<i+b; j++)

 t1[j-i] = lookup_table1(p[j]);
 for(j=i; j<i+b; j++)
 t2=lookup_table2(p[j],t1[j-i]);

 …
 }
}

Reduce Stall Time

CPU

Memory

Demand Access Request Served

Memory Stall

Reduce Stall Time

CPU

Memory

Demand Access Request Served

CPU

Memory

Issue Prefetch

Request Served

Demand Access

Memory Stall

Prefetching

Reduce Stall Time with Prefetching

for(i=0; i<B; i++){
key_hash[i] = hash_compute(key[i]);
prefetch(bucket(key-hash[i]));

}

for(i=0; i<B; i++){
val[j] = hash_lookup(key_hash[j]);

}

● Fixed Prefetch Distance irrespective of Application Nature

Hash computation

Bucket Prefetch

Hash Lookup

Reduce Stall Time with Prefetching

for(i=0; i<B; i++){
key_hash[i] = hash_compute(key[i]);
prefetch(bucket(key-hash[i]));

}

for(i=0; i<B; i++){
val[j] = hash_lookup(key_hash[j]);

}

for(i=0; i<B; i+=b){
for(j=i; j<i+b; j++){
 key_hash[j] = hash_compute(key[j]);
 prefetch(bucket(key_hash[j]));
}
for(j=1; j<i+b; j++){
 val[j] = hash_lookup(key_hash[j]);
}

}

● Sub-batch size allows flexible Prefetch distance

Impact of Prefetch Distance

Early Prefetch
 Demand
 Access

Memory Access Time

Ideal Prefetch Late Prefetch

Cache Contention Memory Stall

Evaluation

Setup

Hardware(Client and Server)

● 8 cores, each works at 2.6 GHz
● 32Kb L1, 256Kb L2, & 20Mb L3

cache

Applications

Application #Entries #Lookups Boundedness

Layer 2 Forwarding 16 M 2 Memory Bound

Named Data Networking 10 M 1-4 Memory Bound

IPv4 Forwarding 528 K 1-2 L3 Bound

IPv6 Forwarding 200 K 4-6 L3 Bound

L2 Forward
encryption/decryption

4 1 CPU Bound

Experiments and Results

Effect of Batching and Prefetching

+2
0

+2
3

+5
5

+2
0

+5
7

 +
21

Sensitivity of Throughput to B
Cache pressure

L2Fwd Application

IO Parallelism

Prefetching Performance

b = 1

(B)

b = B

L2Fwd Application

Sensitivity of Throughput to b
B = 128

Optimal Sub-batch Size

L2Fwd Application

(b)

Comparison with other related work

20
48

15

-2

57

20

 5
9

55

17

 4
6

★ 50% better than
vanilla-P4C

★ 15%-59% better than
G-Opt

★ Equal or better than
Hand Optimized Code

What is the Performance Model?

Nature of Applications
CPU Bound

IO Bound Memory Bound

Typical
Application

● Can be viewed as a queuing system with three components
● Let the service rate of CPU, CPU-Memory, I/O-Memory DMA interface be c, m, d.
● Assume that components can work independently
● Throughput = min(c, mb, dB)
● Based on the nature of application, predict b & B and generate the optimized code.

Performance Model

Conclusion
● Scheduling and prefetching optimizations
● Predict b & B based on application nature
● Significant Performance improvement over vanilla P4C and other previous

work.
● Current Model is based on coarse grained experiments

Conclusion and Future Work
● Scheduling and prefetching optimizations
● Predict b & B based on application nature
● Significant Performance improvement over Vanilla P4C and other

previous work.
● Current Model is based on coarse grained experiments

○ Perform fine grained experiments to get low level understanding about IO, Memory and
CPU

○ Explore optimizations other than scheduling and prefetching, and their interplay

Thank You

