
A Preliminary Performance Model for Optimizing Software
Packet Processing Pipelines

Ankit Bhardwaj, Atul Shree, Bhargav Reddy V, and Sorav Bansal
Indian Institute of Technology Delhi

ABSTRACT
Software packet processing is increasingly commonplace, especially
for software-defined networking constructs. Previous work has in-
vestigated methods to efficiently map packet processing pipelines
to general-purpose processor architectures. Concurrently, novel
high-level domain-specific languages (DSLs) for specifying modern
packet processing pipeline functionality, are emerging (e.g., P4 [5]).
An attractive goal is develop a compiler that can automatically
map a high-level pipeline specification (specified in a high-level
DSL) to an underlying machine architecture. Ideally, the compiler
should automatically exploit the available parallelism, make in-
telligent scheduling decisions, and adapt to the workload needs
in an online fashion, to provide maximum performance. An im-
portant pre-requisite for the development of such a compiler is a
performance model of the underlying machine architecture, for the
applications of interest.

We report our experiences with adding an optimizer to the P4C
compiler [14], which compiles a high-level P4 program to a lower-
level C-based implementation that runs with the DPDK infras-
tructure [1], and gets eventually executed on a multi-socket x86
machine. We make two contributions: (a) we show that significant
performance improvements (up to 55%) can be gained by adding
scheduling and prefetching optimizations to the P4C compiler; and
(b) we develop a preliminary performance model for reasoning
about the expected throughput and latency of a packet-processing
workload, on a modern machine architecture. Our model can be
used by a compiler, to reason about the expected performance of a
packet-processing workload for different code configurations, and
can thus be used to optimize the generated code accordingly.

KEYWORDS
Programmable networks, Software Switch, Batching, Prefetching
ACM Reference format:
Ankit Bhardwaj, Atul Shree, Bhargav Reddy V, and Sorav Bansal. 2017. A
Preliminary Performance Model for Optimizing Software Packet Processing
Pipelines. In Proceedings of APSys ’17, Mumbai, India, September 2, 2017,
7 pages.
https://doi.org/10.1145/3124680.3124747

1 INTRODUCTION
Software defined networking is already mainstream. Newer pro-
tocols and innovative packet processing functionalities imply that

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
APSys ’17, September 2, 2017, Mumbai, India
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5197-3/17/09. . . $15.00
https://doi.org/10.1145/3124680.3124747

newer packet processing pipelines are getting developed over time.
Manually optimizing such packet processing pipelines requires
highly-skilled programmers, is tedious and time-consuming, and
can be repetitive. For example, the RouteBricks paper [8] discusses
several insightful optimizations for a simple packet-forwarding
application on a modern multi-core machine; doing such careful
research for each separate (and potentially much more complex)
packet processing pipeline seems impractical. Further, these opti-
mizations need to be re-tuned for every different architecture.

Domain specific languages like P4[5] and Click[13], are intended
to bridge this gap, by allowing manual specification of functionality
using high-level constructs. In this way, several low-level details
are abstracted away from the programmer. However, the onus of
efficiently mapping this high-level specification to the underlying
machine architecture, shifts to the compiler. The difference between
an unoptimized and optimized implementation for the same high-
level specification can be significant. For example, Kim et. al. [12]
optimize the specification of an IPv4 forwarding engine, specified
using the Click programming model, to achieve 28 Gbps of IPv4
throughput for minimum-sized packets on a machine with two
quad-core Intel Xeon X5550 CPUs, i.e., they achieve roughly 3.5
Gbps per CPU core for this workload. Similarly, P4C [14], a proto-
type compiler for P4, is able to achieve 5.17 Gbps IPv4 throughput
per CPU core for an identical workload configuration, on an Intel
Xeon E5-2630 CPU. In contrast, a hand optimized implementation
for this workload can achieve over 10Gbps per core on an identical
machine. An ideal compiler should be able to bridge this perfor-
mance gap between compiler-generated code and hand-optimized
code.

We evaluate two important compiler optimizations in this con-
text, and evaluate their performance effects on common packet-
processing workloads running on a commodity server machine: (1)
efficiently exploiting the DMA bandwidth between NIC and main
memory; and (2) efficiently exploiting the memory-level parallelism
between CPU and main memory. For the latter, we also evaluate
prefetching to minimize cache-miss stalls. Finally, we rely on exist-
ing C compilers (e.g., gcc) to automatically optimize the generated
code to efficiently utilize the CPU processor (e.g., by maximizing
SIMD and instruction-level parallelism ILP). We experiment with
several code configurations involving varying degrees of available
parallelism to DMA channels, and to CPU-memory channels. We
show improvements over previously published performance results
for similar programs and develop a model for reasoning about per-
formance in this setting. We have integrated our model into the
P4C compiler, to enable it to automatically optimize the example
programs discussed in this paper.

https://doi.org/10.1145/3124680.3124747
https://doi.org/10.1145/3124680.3124747

APSys ’17, September 2, 2017, Mumbai, India Ankit Bhardwaj, Atul Shree, Bhargav Reddy V, and Sorav Bansal

2 AN ILLUSTRATIVE EXAMPLE
We illustrate the tradeoffs involved in implementing a packet-
processing pipeline on general-purpose hardware, using an example
of the L2 packet forwarding application. At the high-level specifica-
tion, the application involves input streams of packets (one stream
per input NIC) converging to a processing node that looks up the
packets’ MAC addresses (source and destination) to index locally-
stored lookup tables, to decide the destination of the packet, and
output streams of packets (one stream per output NIC) emerging
out of the processing node. We use this simple application to illus-
trate the performance implications of scheduling and prefetching
decisions made by the compiler. We focus on performance opti-
mization for a single CPU core. Multi-queueing support in modern
NICs ensures that most applications can scale near-linearly with
the number of cores.

Figure 1: Packet Processing Pipeline

We first discuss the characteristics of the underlying hardware.
Three components of a general-purpose architecture, are most crit-
ical to the performance of the packet-processing application: NIC
subsystem, CPU, and Memory subsystem. Figure 1 illustrates the
data-flow at the hardware level. The NIC is involved in reading the
packets off the wire and storing them into main memory. In our
experiments, a NIC’s input bandwidth is upper-bounded by 10Gbps,
however, its bandwidth to memory is usually much higher1. The
latency from NIC to main memory is usually long (i.e., the NIC-
memoryDMA interface is a high-bandwidth high-latency interface),
and so it is important to allow multiple packets in flight from NIC
to memory, to ensure effective bandwidth utilization across the
NIC-memory DMA interface. To realize this parallelism, we need
batching, by ensuring that multiple packets are consumed/produced
to the NIC’s ring buffer in one shot. This allows the NIC to initiate
multiple PCIe transactions in parallel, thus hiding the round-trip
NIC-memory latency. This available parallelism at the NIC-memory
interface is labeled as 1⃝ in Figure 1.

The next step in each packet processing pipeline is the actual
logic. Some applications are CPU-bound (involve significant pro-
cessing time), and others are memory-bound (involve significant
cache-misses and round trips to main memory). If an application is
CPU bound, we cannot do much, and rely on the underlying C com-
piler to tighten the code, and extract the SIMD and ILP parallelism.
If the application is memory-bound however, our code generator
needs to exploit the available memory-level parallelism.
1The total PCIe bandwidth to main memory in our experiments is around 8 GT/s,
which gets shared across multiple NICs. For all our experiments, except one (IPv4),
the total PCIe bandwidth remains unsaturated.

TheCPU-memory interface is also a high-bandwidth high-latency
interface. CPUs allow multiple memory requests to be in flight, by
using MSHRs (miss-status handling registers) to store the state
of in-flight memory requests. Previous work on comparing CPU
and GPU performance for packet-processing pipelines [11] high-
lighted the importance of exploiting memory-level parallelism in
these workloads. An out-of-order superscalar CPU executes a win-
dow of instructions in parallel. Thus, a CPU can issue multiple
main-memory requests in parallel, only if the consecutive memory
requests happen to be within a single instruction window. Kalia
et. al. [11] achieve this by statically context-switching among multi-
ple threads, on each expensive memory access. They relied on the
programmer to manually annotate the expensive memory accesses
(the ones that are likely to result in a cache-miss) by hand.

We show that memory-level parallelism can be exploited through
sub-batching (a sub-batch is created within a larger batch that
was required to efficiently NIC-memory bandwidth), for this CPU-
memory interface (2⃝ in Figure 1). Sub-batching involves processing
multiple packets (of sub-batch size) at each step of the process-
ing logic. Sub-batching ensures that multiple independent lookups
(if any) can be close-enough, such that memory-level parallelism
gets exploited. Both batching and sub-batching, are loop-fission
transformations [15], when viewed as a compiler optimization. Fig-
ures 2 and 3 show the batching and sub-batching transformations
respectively. We use B to denote the batch-size, and b to denote the
sub-batch-size.

sub app { sub app {
for (i = 0; i < B; i++) { for (i = 0; i < B; i++)

p = read_from_input_NIC(); p[i] = read_from_input_NIC();
p = process_packet(p); for (i = 0; i < B; i++)
write_to_output_NIC(p); p[i] = process_packet(p[i]);

} for (i = 0; i < B; i++)
write_to_output_NIC(p[i]);

}

Figure 2: Batching.

sub process_packet(p) { sub process_packet(p) {
for (i = 0; i < B; i++) { for (i = 0; i < B; i+=b) {

t1 = lookup_table1(p[i]); for (j = i; j < i+b; j++)
t2 = lookup_table2(p[i], t1); t1[j-i] = lookup_table1(p[j]);
. . . for (j = i; j < i+b; j++)

} t1[j-i] = lookup_table2(p[j], t1[j-i]);
} . . .

}
}

Figure 3: Sub-batching, within process_packet.

Sub-batching hides the CPU-memory latency. We further im-
prove it by using the x86 prefetch instruction for future packets. The
prefetch instruction allows the hardware to differentiate a memory
request that is likely to be used in future, from a memory request
that is likely to be used immediately (fetch), and allows better sched-
uling of resources by hardware. Algorithm 1 shows the example

A Preliminary Performance Model for Optimizing Software Packet Processing Pipelines APSys ’17, September 2, 2017, Mumbai, India

prefetching code used for the hash-lookup in the L2 forwarding
example.

Algorithm 1 HASH LOOKUP

1: for i ← 1 To BatchSize do
2: key-hash[i] = extract key and compute hash;
3: prefetch(bucket-for-key-hash(key-hash[i]));
4: end for
5:
6: for j ← 1 To BatchSize do
7: value[j] = hash-lookup(key-hash[j]);
8: end for

Notice that sub-batching is dependent upon batching, in that,
the sub-batch-size can only be smaller than the batch-size. Thus,
if there is no batching, there can be no sub-batching. We find that
the optimal sub-batch-size is often less than the optimal batch-size.

Finally, the processed packets are transmitted to the output NICs.
Assuming uniform distribution of output packets across output
NICs, we expect the utilization at the output memory-NIC DMA
interface to be similar to the utilization of the input NIC-memory
DMA interface.

We evaluate the effectiveness of the batching and sub-batching
transformations, and systematically explore the solution space to
search for the optimal values of B (batch-size) andb (sub-batch-size),
in our experiments.

3 EVALUATION
We perform experiments to answer two main questions: (a) How
much performance improvement is possible through carefully tun-
ing the batch-size B and the sub-batch-size b? (b) Can we develop
a performance model from the experimental data, to generalize
our results for automatic optimization by a compiler optimizer, for
an arbitrary packet processing pipeline. We develop a preliminary
model to explain our current results. We have integrated our model
into P4C to automatically optimize the applications used in this
paper.

3.1 Evaluation Setup
Hardware: Dell Poweredge R430 Rack Server, based on Haswell
architecture. This server has two sockets occupied with Intel Xeon
E5-2640 v3[2] processor. Each processor has 8 physical and each
core is capable of running at 2.60 GHz. Cores on a socket share 20
MB cache. Sockets are connected with 2 QPIs(Quick Path Intercon-
nect), each capable of 8 GT/s. Two dual port NICs,1 Intel x520 and
1 Intel x540, are connected to Socket 0 through PCIe 2.0 and each
port can work at 10Gbps. Total main memory available is 64 GB,
spread across two sockets in a NUMA fashion.
Software: Ubuntu 14.04 LTS operating system with 4.4.0-59 Linux
kernel version. We are using DPDK version 16.07 with IXGBE poll
mode driver to interact with the underlying NICs.
Traffic Generator: We are using same hardware and software on
both the servers and Pktgen-DPDK[4] version 3.1.0 to generate
different kind of packets for different applications used in the ex-
periments. Pktgen-DPDK[4] can generate the 64 bytes packet size

traffic at line rate i.e 14.8 Mpps for 10 Gbps port. We are able to
generate traffic at 59 Mpps for four ports with 64 bytes packet size.
We have extended Pktgen-DPDK[4] to put random source and des-
tination address depending on the application.
Methodology: We use packet-processing pipelines developed in
P4[5] as our test applications. We have extended the P4C[14] com-
piler to generate code with batching, sub-batching and prefetching.
P4C[14] generates C-code that can be run with the DPDK[1] frame-
work, which is then compiled into an executable using GCC. Unless
otherwise specified, all applications are tested with minimum-sized
packets (64 bytes), to test the limits of the system.
Applications: Our applications are similar to the ones used in [11],
to allow head-to-head comparison of performance results:

(1) Layer 2 Switch: Two hash tables are used to store the map-
ping between SMAC/DMAC and the forwarding port. Each
packet goes through two lookup stages, one for SMAC and
another for DMAC. By default, we assume 16 million en-
tries in both tables (as also used in [11]), unless otherwise
specified.

(2) IPV4 Forwarding: A longest-prefix match (LPM) lookup is
performed on the destination IP address to get the forward-
ing port. We populate the forwarding table with 527,961
prefixed, as also used by [11].

(3) IPv6 Forwarding: A longest-prefix match lookup is per-
formed on the destination address to find the egress port.
We populate the DPDK LPM table with 200,000 random en-
tries with the length between 48 to 64, as also done in [11].
Through Pktgen, we generate packets with destination ad-
dress randomly picked from these 200,000 entries. The mini-
mum packet size for this application is 78 bytes and not 64
bytes.

(4) Named Data networking: A hashtable lookup is used to
map a string URL to a forwarding port. We use the URL
dataset given in [16]. Using Pktgen, we transmit packets
containing URLs generated randomly from our dataset. We
use 32 bytes URLs in our packet headers, as also done in [11].

(5) L2 forwardingwith encryption and decryption: We use
the L2Fwd-Crypto[3] application available as a part of the
DPDK source code. The application performs encryption
and decryption based on the input parameters and it then
forwards the packet on Layer 2 with static port mapping.
Unlike other applications, which are largely memory-bound,
this application is compute-bound.

3.2 Performance improvements achievable
through batching and sub-batching

We added batching and sub-batching support to P4C, and show
results for batch-size B = 32 in Figure 4. The “Batching” results
represent the case when sub-batching is disabled (i.e., sub-batch-
size b = 1), while the “Batching&Prefetching” results represent
the case when sub-batching (and prefetching) is enabled and set to
its maximum possible value, i.e., sub-batch-size b = 32. We later
discuss the sensitivity of throughput to changing B and b. For L2
forwarding, batching improves the performance by 20% and sub-
batching further improves the performance by an additional 23%.
Similarly for NDN, batching alone improves the performance by

APSys ’17, September 2, 2017, Mumbai, India Ankit Bhardwaj, Atul Shree, Bhargav Reddy V, and Sorav Bansal

Figure 4: Effect of batching and prefetching

20% and sub-batching results in an additional performance gain of
21%. Using B = 32 and b = 32 for IPv4 and IPv6, we obtain a perfor-
mance gain of 55% and 57% respectively. For a compute-intensive
application like L2Fwd-Crypto, the performance improvements are
much smaller.

3.3 Sensitivity of Throughput to B
We use the L2 forwarding application to demonstrate the effects of
changing application behavior on the optimal values for B and b.
We use the L2Fwd application with five different sizes of the lookup
table. The size of the lookup table approximately represents the
working set of the application. If the table fits in the caches, then
the application is largely compute bound and has few accesses to
the main memory. On the other hand, if the table is much larger
than the last-level cache, then almost every random table access
will result in an access to the main memory. Consequently, the
changing application behavior results in a change in the value of
the optimal B and b, required for optimal throughput.

Figure 5 plots the results for throughput for different table sizes
and batch-sizes B. The solid line represents the case when the
sub-batch-size b equals the batch-size B, i.e., b = B. The dotted
line represents the case when the sub-batch-size b = 1, i.e., no
sub-batching.

There are a few conclusions to draw from this plot: (1) Expect-
edly, throughput is generally higher for smaller tables than for
larger tables. (2) For all table sizes, the throughput usually increases
with increasing B for B < 128, due to better exploitation of DMA
bandwidth. (3) A batch-size beyond 128, usually results in decreased
throughput due to greater stress on the caching subsystem. (4) Sub-
batching improves the throughput for larger table-sizes, but does
not improve throughput for smaller table sizes. This is expected
because sub-batching benefits from memory-level parallelism. For
small table-sizes, the main-memory accesses are few, and so the
benefit of sub-batching is little. We discuss this in more detail in our
next experiment. (5) B = 32 provides near-optimal results across
all configurations of the L2 forwarding application.

Figure 5: The effect of batch-size B on application through-
put, for five different configurations of the L2 forwarding
application. The solid line represents b = B (sub-batching
enabled), and the dotted line represents b = 1 (sub-batching
disabled).

Figure 6: The effect of sub-batch-size b on application
throughput, for four different configurations of the L2 for-
warding application. We use batch-size B = 128 for these ex-
periments.

3.4 Sensitivity of Throughput to b
To further understand the sensitivity of application throughput to
the sub-batch-size b, we vary b for a fixed value of B = 128, for the
L2Fwd application. Figure 6 plots the results, again for different
table-sizes. It is interesting to see that if the table-size is less than,
or equal to 256 entries, the throughput decreases with increasing
batch-size. On the other hand, if the table-size is large (indicating
that many table accesses will be cache misses), the increasing sub-
batch-size, generally improves throughput. If the sub-batch-size is
too large, (e.g., if it is 128 in this case), the performance usually dips

A Preliminary Performance Model for Optimizing Software Packet Processing Pipelines APSys ’17, September 2, 2017, Mumbai, India

due to increased pressure on the caching subsystem, caused by the
increased memory footprint.

These results confirm thatwhile sub-batching is useful formemory-
bound applications, it is not effective (or sometimes even harmful)
for compute-bound applications. We try and capture this formally
in our performance model, discussed next.

3.5 Performance model
We discuss a performancemodel to explain our experimental results.
At a high-level, the system can be modeled as a queueing network,
with three parallel relevant server components: namely, the CPU,
the CPU-memory interface, and the I/O-memory DMA interface.
Assuming that the three components can execute in parallel, and
have service rates c ,m, and d , respectively, the final throughput of
the system would be:

min(c,m,d)

In other words, the throughput of the system is limited by the
slowest component (each packet is expected to traverse all three
components).

With batching, we allow multiple in-flight packets on the DMA
interface, and hence increase the parallelism and service rate d . If
the batch-size is B, then the ideal improvement in the service rate of
the DMA interface would be B ∗ d (i.e., linear scaling). However, in
practice, the interface is not fully parallelizable, and so the service
rate of the DMA interface increases as some function fdma (d,B).
The plot in Figure 5 can be used to roughly approximate the shape
of this function fdma with increasing value of B.

Similarly, with sub-batching, we allowmultiple in-flight memory
requests on the CPU-memory interface, and hence increase the
service ratem. If the batch-size is b, assume that the service rate
of the CPU-memory interface is denoted by a function fmem (m,b).
The shape of fmem can be roughly approximated using the plots in
Figure 6. As we can see, the shape of both functions fdma and fmem
are dependent on the characteristics of the application. For example,
if the application is compute-bound, fmem typically decreases with
increasing b. On the other hand, fmem increases with increasing b,
for memory-bound applications, if b < 128.

Finally, if any improvements can be made to the CPU processing
logic (e.g., see discussion in Section 4), then those are counted
towards improvements in c . In summary, with batching and sub-
batching, the throughput of an application can be represented as:

min(c, fdma (m,b), fmem (d,B))

Thus, a compiler needs to first estimate the characteristics of
the application. For example, the compiler may run the applica-
tion for different configurations in an offline phase, to make con-
clusions about the degree of compute-boundedness (c), memory-
boundedness (m), and I/O-boundedness (d) of that application. Then,
given a machine, the compiler may use this information with the
model presented above to decide the optimal values for b and B.

While our model is preliminary, it does provide an initial basis
for reasoning about performance while generating code for packet
processing pipelines.

Figure 7: Comparison with other related work.

3.6 Comparison with other related work
Figure 7 compares our automatic generated code with vanilla P4C
[14], with another relatedwork, G-Opt, aimed at extractingmemory-
level parallelism through manual annotations [11], and comparable
hand-optimized code available as a part of the DPDK distribution.
To ensure fair comparisons, we verify that the number of lookups
and number of entries in the table(s) is same in all experiments.
In cases where a hand-optimized version or G-Opt results are not
available, the corresponding throughput bar is omitted.

Comparing with vanilla P4C, we obtain 48%, 55%, 57%, and 46%
throughput improvements for L2Fwd, IPv4, IPv6, and NDN applica-
tions respectively. The L2Fwd-crypto application shows minimum
improvements, due to its compute-intensive nature.
G-Opt is a previous effort at bridging the gap between CPU andGPU
performance for packet processing applications. The G-Opt authors
manually annotate code to identify expensive memory accesses
and use multithreading and context-switching to hide the memory
latency. There are two important ways in which our work differs
from G-Opt: (1) our approach is largely automatic and works with
a high-level program representation. (2) we employ batching and
sub-batching instead of multithreading, which makes our approach
more efficient as it avoids context-switching overheads. We report
a 20%, 15%, 17%, and 59% improvement over G-Opt for L2Fwd, IPv4,
IPv6, and NDN applications respectively, in head-to-head compar-
isons. We find that G-Opt authors did not systematically explore
the space of all possible transformations, when compared with our
work, perhaps due to the lack of a performance model. Our system-
atic exploration of B and b, allows us to maximize the throughput,
beyond previous work.

Comparing with hand-optimized code available as a part of the
DPDK distribution, we find that we are sometimes slightly worse
(4% worse for IPv4), and sometimes significantly better (20% better
for IPv6). It is not surprising that our compiler-based approach
of systematic exploration across the parameter space can perform
better than hand-optimized code written by developers.

APSys ’17, September 2, 2017, Mumbai, India Ankit Bhardwaj, Atul Shree, Bhargav Reddy V, and Sorav Bansal

3.7 Scalability

Figure 8: Number of Cores vs Throughput

Figure 8 plots the application throughput with increasing num-
ber of cores. Expectedly, the throughput usually scales linearly
with the number of cores, except when they saturate the PCIe band-
width. In our experimental setup, the theoretical max achievable
throughput for 64 byte packets, summed across 4 NICs, is 59 Mpps
(million packets per second). However, our experimental results
show that it cannot sustain this theoretical limit, and instead satu-
rates at 44Mpps. This difference between theoretical and observed
throughputs, is attributed to the fact that the same NICs are being
used to both send and receive packets, resulting in complex sched-
uling dependencies at the PCIe level. IPv4 throughput hits the PCIe
bandwidth limit in our experimental setup (the lookup algorithm
for IPv4 is the fastest among all applications). IPv6 packet through-
put is slightly lower than others because it uses larger (78-byte)
packets.

3.8 Latency
In all our experiments, the end-to-end latency of a packet can be
at most B times worse than optimal. Usually, trading-off increased
latency (in an already fast end-to-end system) for better throughput,
is acceptable for most real-world applications.

4 DISCUSSION
While we restricted our discussion to batching and sub-batching,
compiler transformations can be much more sophisticated. For
example, the choice of data-structure to maintain and lookup the
table, is often critical to the CPU speed of the application.We believe
that existing work in the realm of data-representation synthesis in
programming languages [9, 10], can be leveraged effectively in this
setting. We discuss one such experiment where we optimized the
trie data structure used for IPv6 longest prefix match, to reduce the
number of average memory accesses per packet.

We implemented longest-prefix match lookup based on a com-
pressed trie, and experimented with our IPv6 application, albeit
with 20,000 IPv6 prefixes, all having length 48. We save around

1.25 memory accesses per packet for this application, resulting in
16% higher throughput. In general, the required transformations
are highly dependent on the application (e.g., L2 forwarding vs.
IPv6 lookup), and the data (e.g., table size), and these characteristics
could change over time. We think that this argues for an automatic
adaptive optimization engine, like the one we have prototyped in-
side P4C, to be able to efficiently utilize the available hardware
resources.

5 RELATEDWORK
There has been a plethora of related work on CPU-based packet
processing and related programming models, including Click [13]
and RouteBricks [8]. Manual optimizations to improve the perfor-
mance of packet processing algorithms [8, 11, 12, 17] have also
been studied extensively. In contrast, our work takes a compiler-
centric approach to this problem, targeting micro-architectural
optimizations, by systematically exploring the space of potential
configurations. Our results show performance improvements over
previous work. While our approach is aimed at automatic code
generation from a high-level specification, most previous works
involved manual optimizations for individual applications. We have
already compared our workwith some of themost relevant previous
work through our experiments.

Previous work in compiler optimization has close parallels with
our work too. Shangri-La et. al. [6] generate an optimized binary for
a specialized network processor, and show that the generated binary
works as well as hand-tuned code. Dobrescu et. al. [7] automate
the decision of splitting an application into parallel components
to achieve high throughput. Previous work on data-representation
synthesis [9, 10] involves automatically inferring the optimal data
structures and schedule for a high-level program specification. Un-
like this previous work, our focus on network processing pipelines
on general-purpose hardware enables more domain-specific op-
timizations and deeper micro-architectural modeling for better
overall performance.

While our initial efforts are aimed at optimization and perfor-
mance modeling, we hope to extend this work, towards developing
an adaptive optimizing compiler for packet-processing pipelines.

REFERENCES
[1] Intel Data Plane Development Kit. http://dpdk.org/.
[2] Intel Xeon Processor E5-2640 v3. http://ark.intel.com/products/83359/

Intel-Xeon-Processor-E5-2640-v3-20M-Cache-2_60-GHz.
[3] L2 Forwarding with Crypto. http://dpdk.org/doc/guides-16.07/sample_app_ug/

l2_forward_crypto.html.
[4] Pktgen-DPDK. http://dpdk.org/browse/apps/pktgen-dpdk/refs/.
[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[6] Michael K. Chen, Xiao Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu, Tao Liu, and
Roy Ju. 2005. Shangri-La: Achieving High Performance from Compiled Network
Applications While Enabling Ease of Programming. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’05). ACM, New York, NY, USA, 224–236. https://doi.org/10.1145/1065010.
1065038

[7] Mihai Dobrescu, Katerina Argyraki, Gianluca Iannaccone, Maziar Manesh, and
Sylvia Ratnasamy. 2010. Controlling Parallelism in a Multicore Software Router.
In Proceedings of the Workshop on Programmable Routers for Extensible Services
of Tomorrow (PRESTO ’10). ACM, New York, NY, USA, Article 2, 6 pages. https:
//doi.org/10.1145/1921151.1921154

http://dpdk.org/
http://ark.intel.com/products/83359/Intel-Xeon-Processor-E5-2640-v3-20M-Cache-2_60-GHz
http://ark.intel.com/products/83359/Intel-Xeon-Processor-E5-2640-v3-20M-Cache-2_60-GHz
http://dpdk.org/doc/guides-16.07/sample_app_ug/l2_forward_crypto.html
http://dpdk.org/doc/guides-16.07/sample_app_ug/l2_forward_crypto.html
http://dpdk.org/browse/apps/pktgen-dpdk/refs/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/1065010.1065038
https://doi.org/10.1145/1065010.1065038
https://doi.org/10.1145/1921151.1921154
https://doi.org/10.1145/1921151.1921154

A Preliminary Performance Model for Optimizing Software Packet Processing Pipelines APSys ’17, September 2, 2017, Mumbai, India

[8] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. 2009.
RouteBricks: exploiting parallelism to scale software routers. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 15–28.

[9] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv.
2011. Data Representation Synthesis. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).
ACM, New York, NY, USA, 38–49. https://doi.org/10.1145/1993498.1993504

[10] Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv.
2012. Concurrent Data Representation Synthesis. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’12). ACM, New York, NY, USA, 417–428. https://doi.org/10.1145/2254064.2254114

[11] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G. Andersen. 2015. Raising
the Bar for Using GPUs in Software Packet Processing. In 12th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 409–423. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/kalia

[12] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo Park, and Sue Moon. 2012. The
Power of Batching in the Click Modular Router. In Proceedings of the Asia-Pacific
Workshop on Systems (APSYS ’12). ACM, New York, NY, USA, Article 14, 6 pages.
https://doi.org/10.1145/2349896.2349910

[13] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)
18, 3 (2000), 263–297.

[14] Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert Kitlei, Dániel Leskó, and Máté
Tejfel. 2016. High Speed Packet Forwarding Compiled from Protocol Independent
Data Plane Specifications. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). ACM, New York, NY, USA, 629–630. https://doi.org/10.1145/
2934872.2959080

[15] M.J.Wolfe. 1982. Optimizing supercompilers for supercomputers. Ph.D. Dissertation.
Univ. of Illinois,Urbana, IL.

[16] Ting Zhang, Yi Wang, Tong Yang, Jianyuan Lu, and Bin Liu. 2013. NDNBench: A
benchmark for Named Data Networking lookup. In 2013 IEEE Global Commu-
nications Conference, GLOBECOM 2013, Atlanta, GA, USA, December 9-13, 2013.
IEEE, 2152–2157. https://doi.org/10.1109/GLOCOM.2013.6831393

[17] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen.
2013. Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT ’13). ACM, New York, NY, USA, 97–108. https://doi.
org/10.1145/2535372.2535379

https://doi.org/10.1145/1993498.1993504
https://doi.org/10.1145/2254064.2254114
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kalia
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kalia
https://doi.org/10.1145/2349896.2349910
https://doi.org/10.1145/2934872.2959080
https://doi.org/10.1145/2934872.2959080
https://doi.org/10.1109/GLOCOM.2013.6831393
https://doi.org/10.1145/2535372.2535379
https://doi.org/10.1145/2535372.2535379

	Abstract
	1 Introduction
	2 An illustrative example
	3 Evaluation
	3.1 Evaluation Setup
	3.2 Performance improvements achievable through batching and sub-batching
	3.3 Sensitivity of Throughput to B
	3.4 Sensitivity of Throughput to b
	3.5 Performance model
	3.6 Comparison with other related work
	3.7 Scalability
	3.8 Latency

	4 Discussion
	5 Related Work
	References

