
ObjecTier: Non-Invasively Boosting Memory Tiering
Performance

Vinita Pawar
vinita@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Ankit Bhardwaj
ankitbwj@mit.edu

MIT CSAIL
Cambridge, Massachusetts, USA

Ryan Stutsman
stutsman@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Abstract
Recent research has developed page-based memory-tiering systems
that place hot pages in fast tiers and cold pages in slower, more
capacious tiers. However, applications place many objects together
within pages, and most pages contain some objects that are hot
and some that are cold. Our simulations of a key-value workload
confirm this; even the hottest pages in the fast tier can contain 50%
cold data.

To improve fast tier utilization, we describe the design of a new
framework,ObjecTier, that uses application knowledge to efficiently
consolidate hot data and cold data. This allows ObjecTier-enabled
applications to boost fast tier hit rates and improve performance
regardless of which underlying memory tiering system they use
underneath, even if that system is page based.

With simulations, we show that ObjecTier may improve average
memory access time (AMAT) by 2× without adding any memory
space overhead for our simulated key-value store workload. We
conclude by outlining the next steps to make the ObjecTier frame-
work a reality for easy adaptation of applications like key-value
stores and other indexed databases.

CCS Concepts
• Software and its engineering → Memory management; •
Computer systems organization→ Distributed architectures.

Keywords
Tiered Memory; Persistent Memory; Compute Express Link (CXL);
Disaggregated Memory; Non-volatile memory

ACM Reference Format:
Vinita Pawar, Ankit Bhardwaj, and Ryan Stutsman. 2025. ObjecTier: Non-
Invasively Boosting Memory Tiering Performance. In Companion of the
16th ACM/SPEC International Conference on Performance Engineering (ICPE
Companion ’25), May 5–9, 2025, Toronto, ON, Canada. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3680256.3721319

1 Introduction
Machines in data centers have hierarchies of memories that span
SRAM (caches), DRAM, NVM [15], and now CXL-attached memo-
ries [30]. Disaggregated memory is further deepening these hierar-
chies. To use these memory tiers most effectively, recent research
has developed memory-tiering systems that explicitly attempt to

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPE Companion ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1130-5/2025/05
https://doi.org/10.1145/3680256.3721319

place hot data in fast tiers and cold data in slower, more capa-
cious tiers by adjusting the location of pages of data using address
translation hardware [2, 18, 21, 25, 34]. These systems have two
main components: page classification and page migration. The page
classifier distinguishes frequently accessed (hot) pages from infre-
quently accessed (cold) pages. Existing systems use software page
faults, hardware reference bits in page tables (ACCESSED bit), or
hardware counter sampling (such as Intel PEBS [14]) to distinguish
pages. After classification, hot pages are migrated to faster mem-
ory tiers while cold pages are migrated to slower memory tiers.
These memory-tiering schemes work in an application-transparent
manner since a page’s virtual address can remain the same as it is
migrated back and forth between fast and slow tiers.

Even though page-based tiering works transparently across all
applications, the use of pages forces these systems to make an inher-
ent assumption about the application data in pages — everything in
a hot page is hot. Studies refute this assumption; many data center
workloads have heavily skewed access patterns [3, 6, 11, 22, 35].
When allocating objects, memory allocators reuse space while try-
ing to avoid fragmentation. In turn, this causes them to scatter
popular objects all over an application’s address space. Hence, of-
ten only a few cache lines within a page are hot, while the rest of
the data is cold with very few accesses to it [7]. This problem is com-
pounded by the fact that page sizes are determined by hardware,
commonly with a 4 KB minimum which is much larger than many
hot objects. Even without extreme skew, this problem persists since
memory allocators are popularity oblivious (§2).

Our main insight is that with modest reorganization of applica-
tion objects, fast tier utilization can be substantially improved. In
this paper, we describe the design of ObjecTier, a new framework
we are developing that uses application knowledge to efficiently
consolidate hot data into pages, which improves fast tier utilization.
ObjecTier is designed to work synergistically with existingmemory-
tiering systems without changing them. ObjecTier clusters hot and
cold objects together across pages within an application, then any
existing memory tiering scheme can more effectively migrate the
application’s pages between tiers based on the overall temperature
of pages.

This is a challenging approach; outside of garbage-collected run-
times like Java, relocating objects is hard because languages like C,
C++, and Rust assume allocations’ addresses remain fixed until they
are freed. Moreover, the system must classify hot and cold objects
within pages and continuously update this classification since data
center workloads’ working sets change over time. Lastly, the system
must not require invasive changes to applications since rewriting
production applications is risky, and retrofitting applications to
work on each new memory hierarchy layer or memory-tiering
system is not scalable.

180

https://orcid.org/0009-0007-4838-3978
https://orcid.org/0000-0002-5094-9711
https://orcid.org/0000-0001-5446-9603
https://doi.org/10.1145/3680256.3721319
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3680256.3721319
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3680256.3721319&domain=pdf&date_stamp=2025-05-05


ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada Vinita Pawar, Ankit Bhardwaj, and Ryan Stutsman

Figure 1: a) In real applications hot objects are scattered around in
different pages; they cannot be grouped a priori since they aren’t
known to be hot when they are allocated. b) Sorting the objects
to group like-popularity objects creates pages that better use fast
memory.

ObjecTier is designed to work with applications that store large
heaps of mixed-popularity objects in memory (100s of GB or more),
like memcached, Redis, and in-memory databases. ObjecTier works
by identifying application heap regions that have hot and cold data
intermixed in them, then it relocates the objects in those regions
to separate the hot objects together and the cold objects together
in new regions. This requires updating references to the objects in
the application with small augmentations to the application logic;
for example, in memcached, ObjecTier must update the hash table
that maps a key to a relocated object. This separation improves fast
memory tier hit rates, improving average memory access times.
This paper makes four main contributions:
(1) First, we add to the growing body of evidence that page-granular

approaches to memory tiering lead to poor performance [4, 9];
we make the case for hot object consolidation for memory tier-
ing using simulations that show, regardless of skew or page
size, scattered hot objects lead to poor fast memory tier utiliza-
tion (§2).

(2) Second, we assess the performance benefits of hot object con-
solidation on simple but common access patterns showing that
average memory access times can be nearly halved compared to
running without consolidation (§2).

(3) Third, we show that small augmentations may provide effective
hot object consolidation in memcached, a widely used caching
application that houses hundreds of gigabytes of objects per
machine in large caching fleets (§4), and we measure the benefits
of hot object consolidation in the FlexKVS key-value store [25].

(4) Finally, we discuss our vision for a general framework that can
be applied to a wide variety of data center applications to make
memory-tiering systems more effective (§4).

2 Motivation: Scattered Hot Data
To make the case for augmenting applications to group hot data
into pages, we simulate a very simple application. This application
is presented with a set of keys that it looks up in a large array that
spans 256 GB mapped with 2 MB huge pages (commonly done to
avoid TLB misses in memory tiering [25, 34]). The objects in the

0 0.25 0.50 0.75 1
0

0.25

0.50

0.75

1
Hot Tier Capacity

UtilizationCu
m

ula
tiv

e 
Fr

ac
tio

n 
of

 P
ag

es Consolidated Scattered

Consolidated Scattered
0

100

200

300

DRAM

NVM

Pattern

AM
AT

 (n
s)

(a) (b)

Figure 2: a) The distribution of page utilization when hot objects are
Scattered and Consolidated. b) The average memory access time of
the two access patterns.

array are 128 B, which models a common object size for memory-
intensive web caching workloads like memcached [22]. Keys are
chosen according to a random but (Zipf, 𝜃 = 0.99) skewed distribu-
tion.

In one run of the application, which we call Scattered, objects
are scattered randomly in the array regardless of their access popu-
larity. In another run, which we call Consolidated, the application
is given an oracle that indicates which keys will be accessed in
the future, so it ensures that the objects in the array are sorted by
access popularity with the hottest object at the start of the array
(Figure 1b).

If these two workloads were run separately against today’s mem-
ory tiering systems, they would result in very different performance.
Memory tiering systems will put hotter pages in the fast memory
tier. However, the Consolidated workload would use the limited
fast tier space better than the Scattered workload since putting a
hot object in the fast tier never forces adjacent cold object to be
promoted along with it. This improves fast tier hit rates and average
memory access times compared to the Scattered workload.

Why is this the case when the objects that the two workloads
access are the same size and have the same popularity distribution?
Memory-tiering systems use hardware paging as an application-
transparent level of indirection to remap pages between the tiers. In
practice, applications allocate heap space to objects in a popularity-
oblivious fashion, and generally they must do so since they have no
way of knowing in advance which objects will be popular. So, over
time today’s applications end up with hot data intermixed with
cold data on pages, similar to the Scattered workload.

Howmuch does thismatter? Figure 2 shows the results from our
simulation; it shows that consolidation’s effect on (a) the amount of
hot data in the fast tier and (b) the application’s observed average
memory access time (AMAT) is substantial. In the simulation, we
track every byte that is accessed at least once, then for each page we
compute fraction of bytes in each page that were accessed during
the run, which we call page utilization.

The figure shows the cumulative distribution function of page
utilization for each page in the 256 GB array after 5 billion object
accesses. The horizontal grey line in Figure 2a indicates the cutoff
above which pages would be in the fast tier if a memory-tiering
system had an oracle that perfectly picked out the top 20% of hottest
pages to place in the fast tier (about 50 GB DRAM compared to
200 GB of NVMOptane). For the Scattered access pattern, the figure

181



ObjecTier: Non-Invasively Boosting Memory Tiering Performance ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada

0 0.2 0.4 0.6 0.8 1
0

100

200

300

DRAM

NVM

Skew ( )

AM
AT

 (n
s)

Consolidated

Scattered

Figure 3: Consolidation’s AMAT benefit vs. access skew.

shows that even when the fast tier contains the hottest pages, about
half of the data in each page is never accessed. With the Consoli-
dated pattern, hot objects are grouped, improving the utilization of
the hottest pages. Consolidation improves the 20% of pages that fit
in the fast tier to have to 70 to 100% utilization.

In both workloads, the fast tier still holds the hottest pages, so
what is the overall impact on application-observed memory system
performance? Figure 2b shows that the average memory access
time drops from 167 ns to 87 ns when hot data is consolidated
in pages. This nearly halves the delay applications see and bring
AMAT much closer to the access time of the DRAM fast tier (70 ns).
Memory-intensive applications could see performance losses of 2×
or more when their hot data is scattered among pages, and this
loss would be higher when tiering against remote memory (remote
memory access times via RDMA are more than 3× higher than
NVM). Hence, spending CPU time to consolidate hot application
data online is promising.
Does this only hold for highly skewed workloads? The above
simulations use a 𝜃=0.99 Zipf-skewed access pattern, which is a
common workload [3, 11, 22]. At uniform random access patterns,
pages have uniform access rates, so consolidation becomes fruit-
less. So, under what amount of skew is consolidation worthwhile?
Figure 3 shows the benefits of consolidation are substantial even
with modest skew in object access patterns. Here, modest levels of
skew like 𝜃=0.5 result in a 1.3× slowdown for memory accesses.
Would 4 KB pages solve this? Memory-tiering systems use 2 MB
pages to reduce TLB misses [2]; however, using 4 KB pages would
help break 2 MB pages into smaller units that can be placed sep-
arately. Rerunning the same analysis from Figure 2b using 4 KB
pages improves AMAT from 167 to 114 ns for scattered accesses,
but consolidation still improves that substantially to 88 ns. Hence,
even with 4 KB pages, intermixed hot and cold data cause a 30%
AMAT overhead for applications. Since 4 KB is the smallest page
size on Intel hardware, it isn’t possible to reduce this overhead fur-
ther using smaller pages. Additionally, on top of this 30% overhead
from intermixed hot and cold data, using 4 KB pages would add an
additional overhead of up to 30% due to increased TLB misses for
tiered applications [2].

3 Related Work
Depending on the addressability of the slow memory tier, memory
systems can be broadly classified as (a) tiered memory systems,
where the memory module with the highest latency is directly
addressable and attached to the memory bus or accessed using
PCIe or CXL, and (b) remote memory systems, where an RDMA

connected memory is treated as the slow memory tier that is not
directly addressable. Different schemes have been developed to
target either of these systems.

Tiered Memory Systems. These systems use multiple layers of
memory devices of different hardware latencies connected using
interconnects like CXL. The state-of-the-art memory tiering sys-
tems [2, 4, 18, 21, 25, 31] target this type of setup. All of these
systems work with 4 KB or 2 MB pages and suffer from the problem
of scattered hot objects. HotBox [4] and MEMTIS [18] advocate for
the use of 4 KB pages rather than 2 MB pages to reduce hotness frag-
mentation caused by cold pages taking up space in a hot hugepage;
however, they do not solve the problem of hotness fragmentation
at a sub-page granularity. As we showed in the prior section, this
still leaves substantial room for optimization.

Memstrata [38] is a hardware-managed tiering system for virtual
machines (VMs) that uses CXL and works at cacheline granularity.
Each cacheline in the system is paired with another; the hardware
keeps a bit of metadata per pair of cachelines to track which of
the two cachelines is in the fast tier and which is in the slow tier.
Conflicts occur when both cachelines of a pair are hot. The system
includes a specialized memory allocator that helps reduce these
conflicts. Memstrata assumes a fixed 1:1 ratio between the size
of the hot and cold tier, and it only works for virtual machines
since the hypervisor’s extended page tables provide an application-
agnostic way to remap physical memory locations between VMs to
work around these conflicting hot cachelines.

Remote Memory Systems. These systems access data on a re-
mote system connected via RDMA. The slow tier, which is the
RDMA-attached tier, is not directly addressable, making it possible
for these systems to intercept every remote access via remote “fat”
pointers. Atlas [9] uses a hybrid approach of fetching both pages
and objects from remote memory using RDMA. Furthermore, when
fetching objects instead of pages, Atlas fits consecutively accessed
remote objects into a new local page; thus, it groups recently ac-
cessed objects in pages. As Atlas is designed to work with remote
memory, it intercepts each RDMA request to track accesses to the
slow tier. This would be costly for the tiered memory systems that
ObjecTier targets, which instead rely on hardware techniques like
processor event-based sampling (PEBS) for tracking accesses.

Semswap [12] consolidates hot objects on a single page in a small
“swap cache” before swapping out to remote memory by adding
extra metadata in each object to track its popularity. The swap
cache is limited to Linux’s recent page cache victims, which limits
the consolidation benefits to this small region. Semswap stores the
mapping of the object’s new physical address upon relocation, and
it primarily relies on page faults to remap these objects, making
the initial access to relocated objects expensive.

4 ObjecTier Design
ObjecTier is a framework that improves the performance of appli-
cations that run on top of memory-tiering systems. Its insight is
that with minor changes, applications can consolidate hot and cold
data into separate sets of pages. Then, when these applications use
existing memory-tiering systems, fast tier memory utilization is
improved since hot and cold data are not intermixed. This lowers
the application’s memory access times, improving performance.

182



ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada Vinita Pawar, Ankit Bhardwaj, and Ryan Stutsman

ObjecTier-enabled applications incrementally reorganize their
heap; this small tweak lets existing memory-tiering schemes dis-
tinguish hot and cold pages more easily and reduces cold data in
the fast tier. Hence, ObjecTier is compatible with all existing page-
based memory-tiering systems, it allows memory-tiering systems
to evolve independently of ObjecTier-enabled applications, and
it ensures that ObjecTier-enabled applications don’t need to be
changed when memory-tiering systems change.

Challenges. In order to be useful, ObjecTier must work with many
existing applications, and using it must not require invasive changes.
This raises two key challenges. First, general programs written
in non-garbage-collected languages like C, C++, and Rust don’t
allow objects to be relocated at runtime. When a memory allocator
returns a pointer, applications expect the address of that object
to remain fixed until it is freed. Unfortunately, applications can’t
predict object popularity at the time of allocation, so, over time, hot
and cold objects are mixed together and cannot be relocated. Second,
even if objects can be relocated during their lifetime, consolidating
hot objects requires the application to decide what is hot and what
is cold.

4.1 Case Study: Key-Value Stores
Two important characteristics of key-value store applications make
them a good fit for ObjecTier. First, these applications use large
regions of memory and keep references to data objects in a small set
of structures. For example, objects in cache servers and databases
are frequently referenced by a hash table or B-tree. Updating the
reference in the hash table is sufficient to relocate an object. These
objects are also often protected by locks or reference counts, mak-
ing it easy to synchronize with other code that may be temporarily
holding references to them. Second, some of these applications
that keep large heaps of objects already track information about
the relative utility and popularity of objects. For example, caching
servers commonly keep eviction queues to track frequency and re-
cency of accesses to rank objects for eviction. In-memory databases
rank objects for eviction as well [19]. By tapping into this infor-
mation and consolidating objects among pages, applications can
use information they already collect to improve the decisions that
memory-tiering systems make at a low cost. Examples of these
applications include FlexKVS [17], Redis [26], TAO [6], FASTER [8],
which are used in hyperscalars such as Microsoft and Meta across
thousands of machines.

As an example, memcached [1] is a good fit for ObjecTier. It
keeps massive sets of objects in its heap, the objects are generally
sub-page sized [22], they are referenced by a few structures (a hash
table and a set of eviction queues), and it already tracks the relative
popularity of objects. Meta famously caches hundreds of terabytes
of objects that occupy large regions of memory in thousands of
machines [22, 23]; they have also experimented with page-based
memory-tiering [21], so their workloads stand to benefit from Ob-
jecTier.

Figure 4 shows memcached’s key data structures. Each request it
services updates an object associated with a key (a SET) or returns
the value most-recently associated with a key (a GET). When a new
object is inserted into memcached, it makes space for the object by
evicting less popular objects. To facilitate this, each object is linked

Figure 4: memcached stores objects in slabs that are indexed by a
hash table. Objects are on one of three queues that track eviction
ranking: the hot, warm, and cold queues. ObjecTier adds two fresh
slabs into which hot and cold objects are incrementally consolidated.

into one of three queues. Objects are initially placed at the head
of the hot queue. As the hot queue grows, objects that have been
accessed while on the hot queue are moved to the warm queue;
otherwise, they are demoted to the cold queue. Objects at the tail of
cold queue are evicted to make space for new objects as needed.

When inserting a new object memcached links the object to the
head of the hot queue, and it adds a reference in its hash table that
maps the object’s key to the object’s location in memory. In most
workloads, most requests are GETs rather than SETs. A GET finds
an object’s key in the hash table, follows the reference to the object,
marks the object as being recently accessed, and sends the object
back over the network. Over time, memcached’s heap becomes
intermixed with objects of differing popularity.

4.2 Integrating ObjecTier
Integrating ObjecTier in a key-value store application requires three
changes.

Finding regions with intermixed hot and cold data. First, Ob-
jecTier must find candidate regions of memory with intermixed
hot and cold data. Reorganizing these regions will best help sep-
arate hot and cold data into different sets of pages. For example,
memcached stores objects in slabs that can be augmented to track
which slab has intermixed data; similarly, FlexKVS has segments
that can serve the same purpose. Augmenting the allocator to track
which slab or segment has intermixed objects only requires one
additional word of metadata (a counter) that tracks fraction of hot
objects. In case of memcached, the data in the slab is referred to by
the hot and warm eviction queues. Small changes in the eviction
code increment and decrement this counter as objects in the slab
are promoted and demoted between eviction queues, which adds
negligible overhead. Whenever ObjecTier needs candidate regions,
it can randomly sample these counts to find pages where the frac-
tion of hot data in the slab is neither near 0 nor 1. A slab or segment
whose hot and cold data is intermixed is selected as a victim.

Classifying objects into hot and cold regions. Next, ObjecTier
must iterate the objects in the victim region and move them into
one of two new regions: one holding objects ObjecTier believes are
hot and one holding objects that ObjecTier believes are cold. The
tiering system monitors accesses and decides tiering placement for

183



ObjecTier: Non-Invasively Boosting Memory Tiering Performance ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada

8%

60%

Figure 5: FlexKVS throughput when hot objects are Scattered and
Consolidated. Horizontal lines show the throughput of FlexKVS
when run completely in DRAM and NVM. Consolidated hot objects
achieve 60% higher end-to-end throughput compared to Scattered
hot objects.

these newly generated regions. ObjecTier can reuse the memory
allocators of these key value stores to acquire new slabs or seg-
ments and fill them up with objects such that their fraction of hot
objects becomes close or equal to 0 or 1. After all objects in a victim
have been relocated, the victim region is freed and returned to the
memory allocator.

In memcached, which maintains eviction queues to track object
popularity, we can add a two-bit field to each object to track its
eviction queue. This can be used to efficiently decide which slab to
copy the object into if its slab becomes a victim.

Relocating objects. Finally, when an object is relocated, the refer-
ences to it must be updated, and ObjecTier must ensure this is safe
despite concurrent SET and GET operations. This requires adding a
callback. The callback is passed a pointer to an object and a pointer
to a new location in a new hot or cold region. The callback uses the
key embedded in the object to find and update its reference in the
hash table, The callback must acquire and release the appropriate
locks while doing so to make this safe.

4.3 Expected Performance Gains
We now evaluate performance gains that could be achieved by
integrating ObjecTier into key-value stores. We experiment with
FlexKVS [17], a key-value store that is memcached compatible
and uses similar data structures for its memory management. We
run FlexKVS with 4 threads and a heterogeneous memory setup
consisting of 8 GB DRAM and 8 GB Optane NVM. We configure the
working set size of FlexKVS to 16 GB. We load the hash table with
15 M key-value pairs of 1 KB each, and access them in a distribution
such that 25% of the keys are hot. We compare the performance of
FlexKVS against two workloads — a consolidated workload, where
the hot keys are consolidated into a set of pages, making up a
contiguous hot-set of 4 GB, and a scattered workload, where the
hot keys are scattered uniformly across the entire working set. We
report the performance of FlexKVS in Figure 5. We observe a 60%
increase in the throughput in the consolidated version compared to
the scattered version. Compared to the ideal case, when the entire

working set fits in the DRAM, the consolidated version is merely
8% slower.

In practice, we expect many key-value-based applications to
benefit even more significantly, since many real in-memory key-
value store workloads have much smaller values [3]; here with
1 KB objects a single page can only contain four different objects
each of varying popularity, but many practical workloads have
100 B objects or smaller leading to dozens to hundreds of varying
popularity objects within each page.

Finally, these numbers do not capture the overhead that Objec-
Tier will introduce due to consolidating objects; however, we expect
these overheads to be very small. This is because the relocation pro-
cess can correlate the placement of objects with similar popularties
and lifetimes to avoid most relocations just as other log-structured
cleaning approaches have shown [10, 28, 29, 36]. We qualitatively
discuss the expected CPU overheads in consolidation in the next
section.

5 Toward a Generic Framework
Now that we have explored application-specific changes required
for ObjecTier, we can look at how all this fits together as a generic
framework for other applications. ObjecTier targets applications
with two main properties. First, they should be memory-intensive
with smaller objects where multiple objects are needed to fill a page.
Many data center applications fit in this category [6, 35]. Second,
they should have a simple memory layout where objects and meta-
data (e.g. memory allocator metadata) are cleanly separated. This
simplifies object relocation without worrying about intertwined
objects and metadata state. Currently, our design is tailored to
key-value stores, but we plan to extend our framework for other
applications with similar characteristics. A generic framework for
integrating ObjecTier into an application requires the following
two main components:
Object Classifier: The classifier records memory accesses to
pages, and it identifies pages with mixed-temperature objects.
ObjecTier can use existing application-specific information for
classifying objects, like eviction queues in memcached. However,
it can also be extended to gather this information with an inde-
pendent approach. Existing sub-page sampling-based (e.g. PEBS)
methods used by memory-tiering schemes can be repurposed for
this goal.
Object Relocator: ObjecTier needs application-specific logic to
relocate objects to hot and cold pages (as shown in Figure 4).
It involves a subcomponent that allocates and maintains a
hot/cold page for object relocation. ObjecTier relocates each
object using an application-provided callback function (e.g.
bool (*relocate)(void* object, char* dst, size_t
bytes_available)). The callback can refuse to relocate an object
if dst points to a region with insufficient space available for the
object, in which case ObjecTier allocates a fresh region and reat-
tempts the relocation. Finally, the callback function also updates
all the references from the old object to the relocated object.
Relocation Policy Manager: Besides the mechanism to identify
and relocate hot and cold objects, the last key piece that ObjecTier
adds are control functions that decide whether the application
can benefit by performing additional consolidation or whether

184



ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada Vinita Pawar, Ankit Bhardwaj, and Ryan Stutsman

it makes sense to leave objects where they are (for example, if
hot objects are already sufficiently consolidated). ObjecTier is de-
signed as a set of procedure calls that can make some incremental
progress on consolidation each time they are called, or they can
be used to run consolidation on its own thread.

Overall, different applications will use ObjecTier differently. Some
applications will rely on it to discover objects to relocate and others
will do this themselves. Somewill have complex relocation callbacks
while others may be a simple memcpy. Our current effort is finding
a small and orthogonal set of components that works for many
applications.

6 Future Work
While we have augmented memcached data structures to support
ObjecTier, we have yet to complete its implementation and eval-
uate its performance. There are a number of important questions
and directions that we hope to explore after we have a few initial
working applications.

Other Candidate Applications. There are many other applica-
tions that can benefit from using ObjecTier. As explained earlier,
good candidate applications will have large sets of sub-page-sized
objects and a small number of references that are easy to enumerate,
since they need to be changed if an object is relocated.

In-memory object stores like Redis [26] are a good fit for Objec-
Tier. Row-store, OLTP-focused in-memory databases are also good
candidates [16, 19, 20, 32, 33]; they similarly keep scattered hot and
cold objects primarily under a single index. Silo is a transactional
store commonly used in evaluating memory tiering schemes [25];
we have begun looking at augmenting it using ObjecTier in addition
to FlexKVS.

Analytical applications like Spark and vector databases [5, 24, 37]
are seemingly good candidates. However, they often scan large con-
tiguous runs of objects or large vectors. These objects are frequently
larger than a page, avoiding intermixing of hot and cold data in
pages. We plan to validate by running a similar analysis as we
performed in Figure 2 for a wide variety of real-world applications.

Finally, languages that use garbage-collected runtimes like Java
and Go could apply ObjecTier to all applications that they run. Gen-
erational garbage collectors already perform a form of hot and cold
separation. One area of future work we plan to investigate is the
extent to which these runtimes already help perform similar consol-
idation to what ObjecTier does. While it is possible existing garbage
collectors provide some of the benefits of ObjecTier when used on
memory-tiered applications, one thing that is worth investigating
is whether adding additional tracking of hot and cold objects (e.g.
via PEBS) can be used to augment their existing garbage collectors
to enhance hot object consolidation.

Consolidation Overhead. Consolidation is a cleaner similar to
those in log-structured file systems [28]; cleaning costs were a noto-
riously contentious point of debate in the academic community [27].
However, this consolidation only works on memory rather than
disk, making low overhead [10, 29, 36]. For example, supposing
that each object needed to be relocated once per hour, then con-
solidating a 256 GB heap would only require about 150 MB/s of
memory bandwidth, which would consume about 0.06% of the mem-
ory bandwidth of a modern machine. In practice, costs would be

much lower because ObjecTier only relocates regions of memory
that are known to intermix hot and cold objects; very hot and very
cold objects would rarely be relocated.
Disaggregation. CXL 2.0 memory pooling [13] and RDMA-based
remote memory pooling schemes [7] can also benefit from Objec-
Tier, especially since remote memory access costs are commonly
higher for remote tiers than for local NVM tiers. We plan to inves-
tigate the benefits of ObjecTier for remote memory tiers, though
decreased bandwidth between the local and remote tier may place
additional constraints on how aggressively we reorganize memory
in order to limit churn between the tiers.

7 Conclusion
Recent years have yielded numerousmemory tiering systems and al-
gorithms, but most work at page granularity to preserve application
transparency. However, for many workloads this hurts effective fast
tier utilization since applications generally organize their objects
in a page-oblivious fashion.

ObjecTier seeks to overcome that limitation without giving up
a decoupled design where applications need not integrate with
the tiering system on which they are run. Our initial explorations
suggest many memory-intensive applications with simple indexing
structures like key-value stores and databases may be easy to adapt
with our approach, and our simulations suggest the benefits can
be substantial (near 2× improved average memory access times
compared with 2 MB-page-based tiering or 1.3× when 4 KB page
are used).

Acknowledgments
This material is based upon work supported by the National Science Founda-
tion under Grant No. CNS-2245999. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.
This work was also supported in part by VMware.

References
[1] 2024. Memcached. https://memcached.org/, accessed 03/16/2024.
[2] Neha Agarwal and Thomas F Wenisch. 2017. Thermostat: Application-

transparent page management for two-tiered main memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems. Association for Computing Machinery, New
York, NY, USA, 631–644.

[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference onMeasurement
and Modeling of Computer Systems (London, England, UK) (SIGMETRICS ’12).
Association for Computing Machinery, New York, NY, USA, 53–64.

[4] Shai Bergman, Priyank Faldu, Boris Grot, Lluís Vilanova, and Mark Silberstein.
2022. Reconsidering OS memory optimizations in the presence of disaggregated
memory. In Proceedings of the 2022 ACM SIGPLAN International Symposium
on Memory Management (San Diego, CA, USA) (ISMM 2022). Association for
Computing Machinery, New York, NY, USA, 1–14. doi:10.1145/3520263.3534650

[5] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the
memory wall in MonetDB. Commun. ACM 51, 12 (dec 2008), 77–85.

[6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013
USENIX Annual Technical Conference (USENIX ATC 13). USENIX Association, San
Jose, CA, 49–60.

[7] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf,
Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking software runtimes for dis-
aggregated memory. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (Virtual,

185

https://memcached.org/
https://doi.org/10.1145/3520263.3534650


ObjecTier: Non-Invasively Boosting Memory Tiering Performance ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada

USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA,
79–92.

[8] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In Proceedings of the 2018 International Conference on Man-
agement of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing
Machinery, New York, NY, USA, 275–290. doi:10.1145/3183713.3196898

[9] Lei Chen, Shi Liu, Chenxi Wang, Haoran Ma, Yifan Qiao, Zhe Wang, Chenggang
Wu, Youyou Lu, Xiaobing Feng, Huimin Cui, Shan Lu, and Harry Xu. 2024. A Tale
of Two Paths: Toward a Hybrid Data Plane for Efficient Far-Memory Applications.
In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24). USENIX Association, Santa Clara, CA, 77–95. https://www.usenix.
org/conference/osdi24/presentation/chen-lei

[10] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman. 2017.
Memshare: a Dynamic Multi-tenant Key-value Cache. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17). USENIX Association, Santa Clara, CA,
321–334.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of the
1st ACM symposium on Cloud computing. Association for Computing Machinery,
New York, NY, USA, 143–154.

[12] Siwei Cui, Liuyi Jin, Khanh Nguyen, and Chenxi Wang. 2022. SemSwap:
semantics-aware swapping in memory disaggregated datacenters. In Proceedings
of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems (Virtual Event, Singa-
pore) (APSys ’22). Association for Computing Machinery, New York, NY, USA,
9–17.

[13] CXL Consortium, Inc. 2024. CXL® 3.1 Specification. https://computeexpresslink.
org/cxl-specification/, accessed 03/16/2024.

[14] Intel Corporation. 2024. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual. https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html, accessed 03/16/2024.

[15] Intel Corporation. 2024. Intel® Optane™ Persistent Memory — Work.
https://www.intel.com/content/www/us/en/products/docs/memory-
storage/optane-persistent-memory/overview.html, accessed 03/16/2024.

[16] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: A High-performance,
Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1,
2 (Aug. 2008), 1496–1499. doi:10.14778/1454159.1454211

[17] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.
SIGPLAN Not. 51, 4 (March 2016), 67–81. doi:10.1145/2954679.2872367

[18] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik Eom. 2023.
MEMTIS: Efficient Memory Tiering with Dynamic Page Classification and Page
Size Determination. In Proceedings of the 29th Symposium on Operating Systems
Principles (Koblenz, Germany) (SOSP ’23). Association for Computing Machinery,
New York, NY, USA, 17–34. doi:10.1145/3600006.3613167

[19] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui
Wang. 2015. High Performance Transactions in Deuteronomy. In Conference on
Innovative Data Systems Research (CIDR 2015).

[20] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, Adrian Birka, and Cristian
Diaconu. 2014. Indexing on modern hardware: Hekaton and beyond. In SIGMOD.
717–720.

[21] HasanAlMaruf, HaoWang, AbhishekDhanotia, JohannesWeiner, Niket Agarwal,
Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanaujia,
and Prakash Chauhan. 2023. TPP: Transparent page placement for CXL-enabled
tiered-memory. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 3.
Association for Computing Machinery, New York, NY, USA, 742–755.

[22] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In 10th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 13). USENIX Association, Lombard, IL, 385–398. https:

//www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
[23] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel

Rosenblum. 2011. Fast crash recovery in RAMCloud. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP
’11). Association for Computing Machinery, New York, NY, USA, 29–41.

[24] Mark Raasveldt and HannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984.

[25] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. 2021.
HeMem: Scalable Tiered Memory Management for Big Data Applications and
Real NVM. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles (Virtual Event, Germany) (SOSP ’21). Association for Computing
Machinery, New York, NY, USA, 392–407. doi:10.1145/3477132.3483550

[26] Redis, Ltd. 2024. Redis. redis.io, accessed 03/16/2024.
[27] John Regehr and Peter Bailis. 2017. Vigorous Public Debates in Academic Com-

puter Science: Expert-curated Guides to the Best of CS Research. Queue 15, 3
(jun 2017), 80–84.

[28] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and Implementa-
tion of a Log-Structured File System. ACM Transactions on Computer Systems 10,
1 (feb 1992), 26–52.

[29] Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout. 2014. Log-structured
Memory for DRAM-based Storage. In 12th USENIX Conference on File and Storage
Technologies (FAST 14). USENIX Association, Santa Clara, CA, 1–16.

[30] Samsung. 2024. Expanding the Limits of Memory Bandwidth and Density:
Samsung’s CXL Memory Expander | Samsung Semiconductor Global. https:
//semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-
of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/,
accessed 03/16/2024.

[31] Sai Sha, Chuandong Li, Yingwei Luo, Xiaolin Wang, and Zhenlin Wang. 2023.
vTMM: Tiered Memory Management for Virtual Machines. In Proceedings of the
Eighteenth European Conference on Computer Systems. 283–297.

[32] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory DBMS.
IEEE Data Eng. Bull. 36, 2 (2013), 21–27.

[33] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
18–32.

[34] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
Page Management for Tiered Memory Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 331–345. doi:10.1145/3297858.
3304024

[35] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. A large-scale analysis of hundreds
of in-memory key-value cache clusters at twitter. ACM Transactions on Storage
(TOS) 17, 3 (2021), 1–35.

[36] Juncheng Yang, Yao Yue, and Rashmi Vinayak. 2021. Segcache: a memory-efficient
and scalable in-memory key-value cache for small objects. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 21). USENIX Asso-
ciation, 503–518. https://www.usenix.org/conference/nsdi21/presentation/yang-
juncheng

[37] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX Association, San Jose, CA, 15–28.

[38] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar Agarwal,
Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill, Mosharaf Chowd-
hury, and Asaf Cidon. 2024. Managing Memory Tiers with CXL in Virtual-
ized Environments. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 37–56.
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong

186

https://doi.org/10.1145/3183713.3196898
https://www.usenix.org/conference/osdi24/presentation/chen-lei
https://www.usenix.org/conference/osdi24/presentation/chen-lei
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1145/2954679.2872367
https://doi.org/10.1145/3600006.3613167
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1145/3477132.3483550
redis.io
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://semiconductor.samsung.com/news-events/tech-blog/expanding-the-limits-of-memory-bandwidth-and-density-samsungs-cxl-dram-memory-expander/
https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3297858.3304024
https://www.usenix.org/conference/nsdi21/presentation/yang-juncheng
https://www.usenix.org/conference/nsdi21/presentation/yang-juncheng
https://www.usenix.org/conference/osdi24/presentation/zhong-yuhong

	Abstract
	1 Introduction
	2 Motivation: Scattered Hot Data
	3 Related Work
	4 ObjecTier Design
	4.1 Case Study: Key-Value Stores
	4.2 Integrating ObjecTier
	4.3 Expected Performance Gains

	5 Toward a Generic Framework
	6 Future Work
	7 Conclusion
	References



