
Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

Ankit Bhardwaj 1 2 Amar Phanishayee 1 3 Deepak Narayanan 1 4 Ryan Stutsman 5

Abstract
In this paper, we investigate how to push the per-
formance limits of serving Deep Neural Network
(DNN) models on CPU-based servers. Specifi-
cally, we observe that while intra-operator paral-
lelism across multiple threads effectively reduces
inference latency, it provides diminishing returns.
Our primary insight is that instead of running
a single instance of a model with all available
threads on a server, running multiple instances,
each with smaller batch sizes and fewer threads
for intra-op parallelism, can provide lower in-
ference latency. However, the right configura-
tion is difficult to determine manually since it
is workload-dependent (DNN model and batch
size used by the serving system) and deployment-
dependent (number of CPU cores on a server). We
present Packrat, a new serving system for online
inference that given a model and batch size (B)
algorithmically picks the optimal number of in-
stances (i), the number of threads each should be
allocated (t), and the batch sizes each should oper-
ate on (b) that minimizes latency. Packrat is built
as an extension to TorchServe and supports on-
line reconfigurations to avoid serving downtime.
Averaged across a range of batch sizes, Packrat
improves inference latency by 1.43× to 1.83× on
a range of commonly used DNNs.

1 Introduction
DNN serving is an increasingly important datacenter work-
load. DNN serving systems are often used in online services
like image and video analytics, speech transcription, text
and code completion, chatbots, and more. In these settings,
requests arrive continuously and must be served in real time;
thus, serving systems must handle high request rates effi-
ciently and with low response latency.

1Work done while authors were at Microsoft Research 2MIT
CSAIL 3Meta 4NVIDIA 5University of Utah. Correspondence to:
Ankit Bhardwaj <ankitbwj@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

There are many DNN serving systems available today, in-
cluding TensorFlow Serving (Olston et al., 2017), Torch-
Serve (TorchServe Team, 2019), and Triton (NVIDIA Cor-
poration, 2018). These systems are designed to use both
CPUs and GPUs to execute DNN model inference. GPUs
generally provide better throughput than CPUs, but they are
often more expensive and power-hungry. They also end up
underutilized for inference workloads (Kosaian et al., 2021).
Recent CPU advances, like high core counts (56 to 64 cores
are common today (Intel, 2019; AMD, 2022)) and special-
ized instructions that support lower numerical precision
multiplications with higher precision accumulates (AVX-
512 (Intel, 2017), AMX (Intel, 2022)), improve inference
performance. Every cloud server comes equipped with such
multicore CPUs and many product groups at large compa-
nies already own large fleets of such servers that are also
used for CPU-based serving, including at Meta and Mi-
crosoft (Hazelwood et al., 2018; Soifer et al., 2019).

In this paper, assuming the use of CPU-based serving, we
push the performance limits of serving DNN models on
a single multicore CPU-based server. Serving systems
like Triton and TorchServe provide useful features like re-
quest handling, adaptive batching of inference requests, and
multi-model serving. One important technique to improve
the latency of DNN model serving is intra-operator paral-
lelism (Shoeybi et al., 2019), where a single operator is
split and run using multiple threads. However, we observe
that increasing the number of threads results in diminishing
returns; this observation is consistent across batch sizes and
DNN models (§2.1). To sidestep the diminishing benefits
from intra-op parallelism, a user might try to create one
model instance per core and configure their workload to
split each batch across the available threads, but as we will
show quantitatively later, this does not minimize latency
either. In short, neither maximizing intra-op parallelism nor
maximizing parallelism across model instances results in
the best inference latency.

In this paper, we present Packrat, an optimized CPU-based
serving system for online inference that automatically de-
termines the number of threads that need to be allocated to
model instances to minimize inference latency. Packrat is
motivated by the following key insight: instead of running
a single instance of a model with all available threads (the
default for systems like TorchServe), running multiple in-

1

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

stances each with smaller batch sizes and fewer threads for
intra-op parallelism can provide lower inference latency.

In the general case, determining the optimal configuration of
⟨instances, threads, batch⟩ (or ⟨i, t, b⟩ for short) is challeng-
ing because it is workload- and deployment-specific. The
optimal configuration depends on the specific model being
served, input dimensions like the batch size (which is itself
dependent on the request arrival rate), and the hardware (e.g.,
number of cores, memory bandwidth, etc.). Furthermore,
even if there were a hypothetical oracle that could provide
the optimal ⟨i, t, b⟩ configuration, a user would still have
to manually recognize when to change configurations and
then reconfigure existing serving systems while specifying
thread-core affinities appropriately.

Packrat uses a novel algorithm to dynamically determine
the optimal ⟨i, t, b⟩ configuration for models on individual
servers given a batch of inputs for the model. It does this
automatically using a small amount of targeted profiling;
from this limited profiling information, it formulates ⟨i, t, b⟩
configurations that are expected to optimize average batch
latency for different batch sizes by solving a 2-dimensional
knapsack problem using dynamic programming. This lets
Packrat quickly find configurations that balance intra-op
latency with multi-instance execution without the need for
user input and without impractically profiling all possible
configuration combinations. Combined with its mechanism
of transitioning between configurations, this lets Packrat
dynamically reconfigure model instances and threads used
for inference, entirely online, so as to optimize inference
latency as workloads change. We evaluate Packrat on a
single server running TorchServe. Over several models, we
show that Packrat improves inference latency and through-
put over the baseline approach that maximizes intra-op par-
allelism by 1.43× to 1.83× averaged over a range of batch
sizes. Packrat code is open-source and can be accessed at
https://github.com/msr-fiddle/packrat.

2 Background and Motivation
DNN inference involves executing a single forward pass of
the model for each inference input. The forward pass con-
sists of a sequence of operations like matrix multiplications,
convolutions, vector operations, and activation functions
that are executed in a specific order. Each request incurs
some overhead including data transformations, memory al-
locations, and data copying. These overheads can be amor-
tized by batching multiple inference inputs and executing
them in one forward pass, improving arithmetic intensity
and overall performance of the system. To minimize queu-
ing latency, production DNN serving systems like Triton
and TorchServe also implement adaptive batching, where
if a full batch has not arrived within a timeout, inference
execution begins on the requests accumulated so far.

Modern server-class CPUs have 10s to 100s of cores (Intel,
2020) and support multicore parallelism to accelerate infer-
ence requests. They also utilize hardware-level optimiza-
tions like vector instructions such as AVX-512 and Fused
Multiply-Add instructions (Quinnell et al., 2007), which en-
able efficient execution of matrix operations by processing
multiple data elements in parallel. Optimized libraries such
as Intel MKL (Wang et al., 2014) and OpenBLAS (Xianyi &
Kroeker, 2017) leverage these capabilities to speed up DNN
computations, while DNN frameworks like PyTorch (Paszke
et al., 2019) and TensorFlow (Abadi et al., 2016) integrate
these optimizations to improve inference performance.

2.1 Intra-Op Parallelism

As described earlier, each inference involves executing a
sequence of operations like matrix multiplication, convo-
lutions, or activation functions with vector operations in a
specific order. Each operation can be broken up and exe-
cuted in parallel across multiple cores. This is called intra-
op parallelism because operators for a single input’s infer-
ence (or a batch of them) are executed in a parallel fashion.
Depending on the implementation, intra-op parallelism is
realized through OpenMP (Chandra et al., 2001) or using
MKL threads. By default, OpenMP matches the number of
threads it uses to the number of physical cores available on
the machine when executing parallel code. However, DNN
frameworks like PyTorch and TensorFlow also allow the
user to specify the number of threads to use.

To understand the impact of intra-op parallelism on infer-
ence performance, we execute inference for different models
while sweeping through different batch sizes and number
of threads for four different models: ResNet-50 (He et al.,
2016), Inception-v3 (Szegedy et al., 2016), GPT-2 (Radford
et al., 2019), and BERT (Devlin et al., 2019). We find that
for all these models, intra-op parallelism improves inference
throughput and latency, but scaling the number of threads
assigned to intra-op parallelism provides diminishing re-
turns. For instance, consider ResNet-50 in Figure 1. For a
batch size of 4, increasing the number of threads for intra-op
parallelism from 2 to 4 improves latency by 1.85×, but from
8 to 16 results in a 1.4× improvement. Similarly, for batch
size 32, going from 2 to 4 threads improves latency by 1.9×,
but going from 8 to 16 improves latency only by 1.4×.

In summary, our main observation is that while some intra-
op parallelism improves inference throughput and latency
across models and batch sizes, scaling such parallelism
across more cores provides diminishing gains. The key
idea in Packrat builds on this observation; stated crudely,
Packrat runs multiple instances concurrently and partitions
all available threads across these instances with the goal of
minimizing inference latency for a given batch size.

2

https://github.com/msr-fiddle/packrat

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

2 4 6 8 10 12 14 16

 30

 100

 300

 1000

La
te

nc
y

pe
r b

at
ch

 (m
s)

 (l

og
 sc

al
e)

BERT

Batch=1 Batch=2 Batch=4 Batch=8 Batch=16 Batch=32 Batch=64 Batch=128

2 4 6 8 10 12 14 16
 30

 100

 300

 1000
GPT-2

2 4 6 8 10 12 14 16

 30
 100
 300

 1000
 3000

Inception-v3

2 4 6 8 10 12 14 16
Threads

 10

 100

 1000

ResNet-50

Figure 1: Intra-operator parallelism offers diminishing returns after scaling beyond a certain number of threads. Though the exact point
and magnitude of diminishing returns may differ, this trend is consistent across different models and batch sizes.

Optimizer

B
at

ch
 S

iz
e

E
st

im
at

o
r

Worker

Worker

. . ..

. . ..

. . ..

Control

Requests

Inference

Requests

M
an

ag
e

m
en

t

In
te

rf
ac

e

M
an

ag
e

m
en

t

In
te

rf
ac

e

Batch

Aggregator

Batch

Partitioner

Dispatcher

Batch

Aggregator

Batch

Partitioner

Dispatcher

Resource

Allocator

Resource

Allocator

Model

Manager

WorkerWorker

2 3

4

iii

iv

in
st

an
ce

s
(i

)

threads (t)

Req. Queue

ii

1

i

Figure 2: Architectural overview of Packrat, highlighting its com-
ponents and their interactions for the flow of inference requests
(orange arrows) and for control messages such as configuration
changes (blue arrows).

3 Packrat Design
We build Packrat as an extension to TorchServe (a well-
established serving system). Packrat is targeted at online
inference workloads, where input inference requests are con-
stantly streaming in and responses need to be streamed out.
When Packrat is enabled in TorchServe, it monitors incom-
ing inference requests to select an appropriate batch size
B, and transparently and dynamically reconfigures the num-
ber of model instances and the intra-op parallelism of each
instance to improve average batch latency. In cases where
inference request rates change, this configured batch size
might need to change as well, triggering reconfiguration.

The key idea in Packrat is that rather than having a single
“fat” instance that uses all available threads to parallelize in-
ference within a single batch, it instead divides large batches
into smaller batches, each processed concurrently by one of
several “thin” instances that use a limited amount of intra-op
parallelism. Given a server with T threads and incoming
inference requests grouped into batches of size B, Packrat
determines a configuration [⟨i1, t1, b1⟩, . . . , ⟨in, tn, bn⟩]

such that
∑n

j=1 ij · tj = T and
∑n

j=1 ij · bj = B. For sim-
plicity, we will refer to this list as a ⟨i, t, b⟩ configuration
for the remainder of this paper. In each ⟨ij , tj , bj⟩ configu-
ration in this list, ij instances concurrently execute model
inference (ij specifies the number of instances of this type).
Each such instance uses tj threads for intra-op parallelism
(tj is the degree of intra-op parallelism for this instance),
and the batch size processed by this instance is bj .

For a given ⟨T , B⟩, Packrat tries to pick a configuration that
minimizes per-batch latency while improving throughput
compared to using [⟨1, T , B⟩] (the fat configuration). How-
ever, determining the optimal ⟨i, t, b⟩ configuration is chal-
lenging because it is workload- and deployment-dependent:
on the specific model being served, input dimensionality
such as tokens in a sequence and batch size, and the number
of cores and sockets in the targeted hardware.

To tackle these challenges, Packrat uses a combination of
workload profiling, algorithmic techniques to determine the
optimal ⟨i, t, b⟩ configuration, and systems optimization to
seamlessly reconfigure serving instances. Packrat profiles a
range of single-instance configurations (⟨1, t, b⟩ configura-
tions), then uses the measured average batch latency of each
single-instance configuration to compute the ⟨i, t, b⟩ config-
uration that minimizes expected average batch latency by
using a 2D dynamic-programming-based knapsack solution
for a given model and ⟨T , B⟩. In some cases, an ⟨i, t, b⟩
configuration with only a single element is insufficient to
describe the optimal configuration; Packrat handles these
cases, but we defer discussion of it to §B for simplicity.

Packrat uses a simple yet effective technique to reconfigure
the serving system with an updated ⟨i, t, b⟩ configuration
without any service downtime (§3.7.1). It maintains two sets
of instances, one active and one passive, and it reconfigures
the passive set with the desired new configuration. It then
swaps the two sets, while scaling up the new active set while
simultaneously scaling down old active (now passive) set.

3

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

3.1 Architecture Overview

Packrat’s architecture, in Figure 2, consists of key com-
ponents that work together to optimize inference latency
dynamically. The Batch Size Estimator (§3.8) predicts
incoming request rates to determine an appropriate batch
size. The Optimizer (§3.3) then selects the best 〈i, t, b〉
configuration using profiled data (§3.2). The Resource Al-
locator (§3.4) assigns compute resources accordingly, while
the Dispatcher (§3.5) distributes requests among instances.
Finally, the Worker (§3.6) processes inference requests and
returns results. We describe each component in detail next.

3.2 Profiling

Packrat uses model profiles to find ⟨i, t, b⟩ configura-
tions that will improve performance for a given ⟨T , B⟩.
Model profiling is always done using a single instance
at a time, while varying threads for intra-op parallelism
(t) and batch size (b). The profiler runs configurations
for various ⟨t, b⟩ values. In practice, we use ⟨t, b⟩ ∈
{1, . . . , T} × {20, 21, . . . , 2n}. For each of these config-
urations it records its average batch latency Lt,b. By using
only powers of 2 for b, Packrat reduces the number of pro-
filed configurations from 2n · T to (n + 1) · T . Profiling
more configurations could lead to more accurate perfor-
mance estimates (and thus improve the optimizer’s final
choice of configurations), but §5 shows this modest amount
of profiling is sufficient to show substantial gains. Moreover,
profiling each configuration takes on the order of minutes,
making profiling such a combinatorial space impractical for
realistic workloads. For example, for n = 10 and T = 16,
using only powers of 2 for b reduces the number of profiled
configurations from 16,384 to 176 which reduces wall-clock
profiling time from 30 days to a few hours. Profiling is
performed offline and not on the inference critical path.

As Figure 3 shows, Packrat’s optimizer queries the profiled
lookup table to find the expected latency for a given configu-
ration. For each profiled configuration ⟨1, t, b⟩, Profile[t,b]
contains the measured single-instance average batch latency
(represented as Lt,b), which the optimizer uses to find con-
figurations to minimize end-to-end latency.

3.3 Optimizer

The optimizer is the core component of Packrat. Its goal
is to find an ⟨i, t, b⟩ configuration that minimizes average
batch latency for a given ⟨T , B⟩. Optimal configurations
for a given ⟨T , B⟩ are cached to avoid repeated work.

Packrat uses dynamic programming to find the optimal con-
figuration for a given ⟨T , B⟩, using the latency of the pro-
filed configurations as an input. We use a multi-dimensional
knapsack problem formulation (Fréville, 2004). The size
of the knapsack is 2-dimensional; the first dimension is the

L1,20 L1,21 … L1,210

L2,20 L1,21 … L2,210

… … … …

L16,20 L16,21 … L16,210

L1,20 L1,21 ∞ … ∞ L1,210

L2,20

…

L16,20

T T

B B

Profile DataOptimizer Table

102410231 2 3
1

2

16

1

2

16

20 21 210

Filled with profiling

Filled with DP Algo

<T= 16, B = 4>
min <2, 8, 2>,<4, 4, 1>,max <2, 4, 1> ,...

 <1, 8, 2>

Figure 3: Packrat’s latency minimization algorithm uses dynamic
programming. Single-instance profiled latency data is provided
as input to the algorithm, which then fills in a comprehensive
optimizer table for all values of ⟨t, b⟩∈⟨T , B⟩.

number of cores (T) and the second dimension is the batch
size (B). Profiled configurations are used as the items to
fill the knapsack. The weight of each item is ⟨t, b⟩, and the
value of the item is the expected average batch latency of the
⟨t, b⟩ configuration. We can use a given ⟨t, b⟩ configuration
multiple times (corresponds to the same ⟨t, b⟩ configuration
executing concurrently). The goal of the optimizer is to
find a set of items that minimizes batch latency (Equation 1)
across model instances while keeping the total weight of the
items equal to the size of the knapsack ⟨T , B⟩ (Equation 2).

Minimize max
0≤tj≤T

0≤bj≤B

Ltj ,bj (1)

subject to
∑

tj ≤ T and
∑

bj = B (2)

Ltj ,bj is the latency of the ⟨tj , bj⟩ configuration. tj , bj are
the number of cores and batch size of the jth configuration.

We can now describe our dynamic programming algorithm.
Let opt[t, b] be the total latency of processing b inputs with
the t threads. opt[t, b] has the optimal sub-problem prop-
erty: we can compute opt[t, b] by looking at opt[t′, b′] where
t′ ≤ t and b′ ≤ b. If possible, opt[t, b] is initialized to the
profiled latency with the same number of inputs and threads;
otherwise, it is initialized to ∞. Mathematically, opt[t, b]
can be computed as follows:

opt[t, b] = min
t′≤t,b′≤b

(max (opt[t− t′, b− b′], Lt′,b′))

where Lt′,b′ is the latency of the profiled configuration ⟨t′,
b′⟩. The inner max is performed since the end-to-end la-
tency of two concurrent work items is just the latency of
the slower work item. The returned configuration is then
the one corresponding to opt[T,B]. This algorithm has run-
time complexity pseudo-polynomial in T and B, which is
practical for reasonable T and B values.

The above algorithm provides the optimal solution in theory
since it searches over all possible configurations. However,

4

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

in practice, the generated ⟨T , B⟩ solution might not match
the expected theoretical optimal, since the optimizer de-
pends on profiles measured in isolation, and it disregards
performance contention from running various ⟨i, t, b⟩ con-
figurations concurrently on the same multicore server (such
contention profiling across all configuration combinations
is impractical). We show in §A that the gap between the
optimal solution in theory and practice is small.

3.4 Resource Allocator

The resource allocator assigns resources to instances based
on the ⟨i, t, b⟩ configuration returned by the optimizer. The
resource allocator is the only component that interacts with
the dispatcher and the worker. For now, the allocator as-
sumes that resources are not over-subscribed and

∑
ij · tj

is less than or equal to the number of physical cores in the
system. Given that the resources are not over-subscribed,
the allocator allocates resources to the instances in a round-
robin fashion. The compute resources for each instance are
statically allocated at the time of instance creation and do
not change at runtime. Hence, the allocator pins the instance
to the cores allocated to it to avoid thread migration costs.

The allocator is independent of the optimizer and a user can
specify other ways to allocate resources to the instances.
For example, the user can specify specific cores for each
instance. By default, the allocator avoids assigning cores
across sockets to prevent performance degradation from
inter-socket communication in NUMA domains. However,
while individual instances are socket-local, different in-
stances can utilize all available sockets in the system.

3.5 Dispatcher

The dispatcher handles two types of requests: (1) manage-
ment requests and (2) inference requests. The dispatcher’s
management interface handles “control” messages such as
requests to register a new model and those to create and
delete instances of any of the registered models. Manage-
ment requests are handled in the dispatcher itself and are
not on the critical path of inference execution.

Inference requests are dispatched to appropriate worker
instances. The dispatcher itself handles both batch aggrega-
tion and batch partitioning of the requests. Batch aggrega-
tion (B) is done per model and batch partitioning is done
per instance using the b values in the ⟨i, t, b⟩ configuration.
Batch aggregation also uses a user-provided batch timeout
value; request aggregation is done until the timeout expires.
If the timeout expires before the batch size B is reached,
the dispatcher simply dispatches the current batch to the
instances. The Batch Size Estimator triggers a configuration
change if timeouts happen frequently. However, instance re-
configuration is time-consuming and is done conservatively.

3.6 Worker Instance

Each worker instance is responsible for executing an infer-
ence batch with b inputs for a given model using t threads.
Each worker executes a user-provided handler over a batch
of requests. A handler takes the batch of requests as input
and returns the batch of responses. During the handler ini-
tialization, the worker might need to load the model into
memory. Users may also specify any optimizations to use
during model initialization. For example, the user can spec-
ify that the model should be loaded and optimized for graph
mode (TorchScript for the PyTorch framework).

Inference is executed by the framework using parallel im-
plementations of the operators (intra-op parallelism). Each
parallel operator implementation is responsible for execut-
ing the operator across t intra-op threads. This paralleliza-
tion involves slicing the input batch into multiple chunks,
partitioning operator state across threads, and executing the
operator on each chunk in parallel. Packrat does not im-
prove the mechanism of operator parallelization but simply
uses the functionality provided by the framework in a more
efficient way by assigning an appropriate number of threads.

3.7 Configuration Changes

Reconfiguration is the process of changing the ⟨i, t, b⟩ con-
figuration for a model and is handled by Packrat’s Resource
Allocator. The Batch Size Estimator triggers a configuration
change by invoking the optimizer with a new batch size B̃
if it predicts that the request arrival rate for a given model
has changed considerably. Reconfiguration does not require
Packrat to run any new profiling; as the batch size changes,
the optimizer is re-run with the new B̃ value to find the right
configuration for the new batch size (if the given ⟨T , B⟩
configuration is not present in the optimizer cache).

Reconfiguration is time-consuming and done conserva-
tively (§3.8). Packrat works with an implicit assumption that
the workload for a given model does not change frequently,
which is a reasonable assumption for many datacenter work-
loads (Hazelwood et al., 2018). Moreover, dramatic work-
load changes would not only affect Packrat configuration but
could also require datacenter-level resource re-provisioning.

Packrat uses a TorchServe feature, worker scaling, to handle
configuration changes. Worker scaling is the process of
increasing or decreasing the number of workers for a given
model. However, in Packrat, we might have to change the
configuration of the model instance itself by allocating it
fewer or more threads than currently assigned.

Packrat handles the configuration change in two different
ways. The first is when a configuration change only requires
increase or decrease in the number of instances, but the
number of threads within each of the existing instances
remains the same. Such configuration changes are handled

5

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

by the worker scaling mechanism. Scaling down is achieved
by removing the workers of a model one by one. Workers
are removed in a round-robin fashion and resources are
released back to the resource allocator (§3.4). Scaling up is
similar to the initial worker creation process.

The second is the trickier case, and it occurs when the config-
uration change requires different number of threads for the
workers as compared to their current configuration. Packrat
handles such reconfigurations in a two-step process called
active-passive scaling (§3.7.1). Packrat relies on this pro-
cess to avoid changing the internal operator implementation
libraries and making our approach portable across serv-
ing systems. Operator implementation libraries like ATen,
MKL-DNN, etc. have their own internal mechanisms to
manage and schedule the threads (OpenMP, 2020), but these
libraries are not designed to handle frequent configuration
changes due to associated higher overheads (Gross, 2018).

3.7.1 ACTIVE-PASSIVE SCALING.

Packrat uses active-passive scaling when the optimizer’s
suggested configuration change requires instances to adjust
the number of threads allocated to instances. A naive way
of going about such a reconfiguration would be to first shut
down all instances in the old configuration (e.g, ⟨i1, t1, b1⟩)
and then start all instances in the new configuration (e.g.,
⟨i2, t2, b2⟩). In the worst case, all the old workers will be
removed, and new workers will be created. However, such
an approach risks having the serving system be unresponsive
for the entire duration of such reconfigurations.

Packrat uses active-passive scaling to avoid disruption. For
each model, Packrat maintains two versions of the model.
The active version respects the current configuration and
is currently serving requests. The passive version has zero
workers and stays inactive until activated.

Active-passive scaling is done in three steps. First, the pas-
sive version is scaled up to the new configuration (e.g., we
scale up to i2 workers as per the new ⟨i2, t2, b2⟩ configura-
tion). Next, the dispatcher starts redirecting new requests
to the new passive instances. Finally, the historically active
version is scaled down to zero workers in the background
(from i1 workers as per the old ⟨i1, t1, b1⟩ configuration)
once they have completed their ongoing requests and been
deactivated at the dispatcher. At this point, the active and
passive sets of workers have been swapped.

3.8 Batch Size Estimation

To choose a good configuration, Packrat needs to know the
batch size for the current workload (B). Packrat estimates
the batch size in an online fashion by tracking the request
queue depth over time. It is easy enough for the Batch
Aggregator to track the size of each batch that it passes

to workers, but this batch size varies over time depending
on input request arrivals, and different batch sizes have
different “optimal” ⟨i, t, b⟩ configurations.

Reconfiguring the number of instances and threads takes sev-
eral seconds and is expensive (§5.2.2), so it is important that
reconfiguration only happens when the workload is stable
enough to warrant it. Without some kind of smoothing, Pack-
rat will risk “flip-flopping” between configurations. Pack-
rat uses two-level smoothing to avoid this problem. First,
Packrat’s Batch Size Estimator uses the most recent request
queue depth Q̂ to track an exponentially weighted moving
average of request queue depth (Q̃x = αQ̂+(1−α)Q̃x−1)
and picks the next lower power of two to Q̃ as an estimated
batch size B̂x. Second, Batch Size Estimator takes the mode
over the last n estimated batch sizes (B̂x−n, . . . , B̂x) to get
a final smoothed batch size (B̃). After each reconfigura-
tion timeout, Packrat’s Batch Size Estimator compares the
current batch size B to the smoothed batch size B̃. If B̃ is
different from B, Packrat reconfigures the system to use the
new batch size B̃. §5.2.2 shows that this approach works
well in practice, and Packrat uses it to both scale up and
scale down the batch size B as request arrival rates change.

4 Implementation
We implement Packrat as an extension to TorchServe, a
popular serving system in the PyTorch ecosystem. Packrat
augments TorchServe with features such as the batch size
estimator, batch aggregator, optimizer, and resource alloca-
tor. TorchServe supports plugins to customize the serving
system. For example, we customize the batching layer to
provide our custom batch aggregation, batch partitioning,
and batch size estimation strategies, and the worker manage-
ment layer for our custom resource allocator. In all, Packrat
is implemented in ∼ 5k lines of code.

Optimizer. The optimizer is responsible for providing the
optimal configuration for a given ⟨T , B⟩ pair. However, it
does not directly interact with the resource allocator. We
implement the optimizer as a standalone service. A separate
task acts as a client to the optimizer and uses TorchServe’s
management API to communicate with the resource alloca-
tor. The resource allocator then updates the configuration to
match the desired configuration returned by the optimizer.

Resource allocation. TorchServe supports custom resource
allocators that can create and destroy workers or allocate
resources to workers. For fault tolerance, TorchServe also
re-spawns workers if they die. Packrat’s custom TorchServe
resource allocator maintains information about all idle and
busy cores and the desired Packrat configuration. Based on
the target configuration, it creates workers on demand, and
it destroys them when they are not needed. Internally, it uses
a modified version of Intel’s IPEX TorchServe launcher to

6

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

Table 1: Server configuration for all our experiments.

CPU 2× 16-core Intel Xeon Gold 6142 at 2.6 GHz
RAM 384GB (6x32 GB DDR4-2666 DIMMs/Socket)
OS Ubuntu 20.04 LTS, Linux 5.4.0-100-generic
Software Python 3.8.10, PyTorch 1.12.1, TorchServe 0.6.1,

Intel MKL-DNN v2.6.0, OpenMP 4.5

launch and pin worker threads on the desired cores (Intel Ex-
tension for PyTorch, 2022). This custom resource allocator
is only used when Packrat is enabled in TorchServe.

Batch aggregation and request estimation. TorchServe
allows integrating custom batching algorithms at startup
time. Our batch aggregator extends TorchServe’s default
implementation; we add a batch size estimator that inter-
cepts incoming requests and estimates the batch size for
each inference endpoint (§3.8).

5 Evaluation
We evaluate Packrat using both inference microbenchmarks
with PyTorch and end-to-end performance with TorchServe.
Our evaluation seeks to answer the following questions:

• How does Packrat’s proposed approach compare to the
state-of-the-art for inference microbenchmarks with Py-
Torch for a range of models and batch sizes? (§5.1.1)

• How does Packrat improve end-to-end serving latency
and throughput in TorchServe, and how do these numbers
compare to microbenchmarks with PyTorch? (§5.2.1)

• How effective is Packrat’s reconfiguration in avoiding
stalls and improving serving latency? (§5.2.2)

• How accurate is the optimizer in predicting the perfor-
mance of multi-instance configurations? (§A)

Experimental Setup: All experiments are performed on a
single Cloudlab (Duplyakin et al., 2019) c6420 machine (see
Table 1) with hyperthreading disabled to avoid interfer-
ence (Cho & Saroufim, 2022). Benchmarks report time
averaged over 100 iterations.

Models: We benchmark ResNet-50, Inception-v3, GPT-2,
and BERT models. ResNet-50 and Inception-v3 models
are image classification models, GPT-2 is a text generation
model, and BERT is a text classification model. These
models are widely used in real applications.

5.1 Microbenchmarks

Setup. We microbenchmark various PyTorch models (in
eager and graph modes) and batch sizes using pretrained
models from the model zoo. First, we report the inference
time using PyTorch (with and without Packrat). Later in
§5.2, we report the end-to-end latency of inference requests
when using TorchServe (with and without Packrat). Unless
explicitly stated, we report Packrat speedup numbers com-
pared to corresponding fat-instance baselines. Similarly,

unless explicitly called out, we only report the graph mode
results as it consistently provides lower latency than eager
mode in all our experiments, and thus is a stronger baseline.

5.1.1 SPEEDUP OVER BASELINE EXECUTION.

Figure 4 shows the throughput and latency speedup of multi-
instance execution over fat instances for ResNet-50 (a),
Inception-v3 (b), GPT-2 (c), and BERT (d). The speedup is
measured for different batch sizes and for all threads in a
socket. The fat instance is run with 16 threads and batch size
B and the thin instances use the ⟨i, t, b⟩ configuration sug-
gested by Packrat’s optimizer where ⟨T , B⟩ is partitioned
across

∑
ij smaller instances where

∑
ij · tj = T and∑

ij · bj = B. For a given ⟨T , B⟩, we measure the average
throughput and latency of Packrat’s chosen configuration
(τP and λP) and of the fat-instance baseline (τB and λB).
Throughput and latency speedups are calculated as τP /τB
and λB/λP , respectively. In practice, our throughput and
latency speedup are almost always the same.

Even though Packrat’s chosen configurations use the same
total number of threads as the fat instance, Packrat obtains
substantial improvements in latency and throughput. The
image classifiers, ResNet50 and Inception-V3 show a 1.53×
and 1.52× mean speedup across batch sizes, respectively;
the language models GPT-2 and BERT show a 1.18× and
1.13× average speedup, respectively.

Speedup Reasons: There are two key reasons that Pack-
rat’s configurations outperform the fat instance which uses
all threads on the server for intra-op parallelism. First, all
OpenMP threads synchronize at multiple barriers in the
fat-instance execution resulting in compute resource under-
utilization. However, in multi-instance execution, thread(s)
in each instance can execute independently of other in-
stances, allowing the multi-instance execution to efficiently
utilize the compute resources. Second, usually, workloads
have multiple phases with different characteristics (e.g., a
part that is compute-intensive and another that is memory-
intensive). OpenMP barrier sync enforces all the threads to
march in lock-step, forcing every thread to execute similar
work. This results in over-utilization of one resource and
under-utilization of other resources. However, Packrat’s con-
figurations include some degree of multi-instance execution;
hence, the threads in each instance can execute different
phases without coordination. This results in better average
compute and memory bandwidth utilization, which is also
apparent when profiling the execution of both approaches.

Packrat’s profiler does not exhaustively profile all possible
⟨t, b⟩ configurations to keep total profiling time on order of
hours (instead of days). We found empirically that exhaus-
tive profiling (all values of b) does not change the Packrat-
selected configurations and hence actual latency speedups.

7

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

16 64 256 1024
1.0
1.3
1.6
1.9
2.2

Sp
ee

du
p

ov
er

 F

at
 In

st
an

ce
(a) ResNet-50

Actual Speedup Expected Speedup

16 64 256 1024

(b) Inception-V3

16 64 256 1024

(c) GPT-2

16 64 256 1024
Batch Size

(d) BERT

Figure 4: Inference microbenchmark when using Packrat in PyTorch, showing the speedup of Packrat over baseline fat-instance execution
in graph mode for four different DNN models. We also see the comparison of Packrat’s expected speedup (estimated from isolated runs of
individual instances) to the actual speedup attained when running multiple thin instances concurrently.

8 32 128 512
1.0
1.3
1.6
1.9
2.2

Sp
ee

du
p

ov
er

 F

at
 In

st
an

ce

(a) ResNet-50

8 32 128 512

(b) Inception-V3

8 32 128 512

(c) GPT-2

8 32 128 512
Batch Size

(d) BERT

Figure 5: Packrat’s end-to-end latency and throughput speedup over the corresponding baseline (fat-instance) runs in TorchServe. GPT-2
is the only model that uses eager mode in this figure; it crashes TorchServe in graph mode.

Comparison with single-threaded instances: Another
easy-to-configure baseline is to run T single-threaded in-
stances, one on each CPU core. Single-threaded instances
perform worse than the fat instance baseline because of
increased cross-instance resource interference and under-
utilization (§A). Moreover, single-threaded instances also
inherently cannot exploit intra-op parallelism to improve
latency. In contrast, Packrat always finds high-performing
configurations and provides some speedup against T single-
threaded instances (figure omitted due to space constraints).
For GPT-2 Packrat performs up to 3.2× better and for
other models, Packrat performs either better (from 1.02× to
1.75×) or equal to 16 single-threaded instances.

The difference between expected and actual speedups arises
from increased resource contention due to multiple instances
running simultaneously. In Appendix A, we provide a de-
tailed explanation of the underlying causes. Further explo-
ration in Appendix C demonstrates that this contention is not
as pronounced with newer AMD and Intel server machines.

5.2 End-to-End Experiments

Next, we evaluate Packrat’s end-to-end performance on
TorchServe using the same setup as in §5.1. Unless stated
otherwise, we use the default TorchServe and report results
for the graph mode due to its better baseline performance.

5.2.1 LATENCY IMPROVEMENTS.

Figure 5 shows the latency and throughput speedup of Pack-
rat’s configurations over baseline fat-instance execution for
ResNet-50 (a), Inception-v3 (b), GPT-2 (c), and BERT (d).
Packrat consistently improves performance across all batch
sizes for all models. Packrat provides an average speedup

0 8 16 24 32
Elapsed Time (s)

0

500

1000

1500

2000

La
te

nc
y

pe
r b

at
ch

 (m
s)

B = B1
 Config: B1

Request rate spikes,
 Config: B1

B = B2,
 Transition B1 -> B2

B = B2,
 Config: B2

Config: B1 Config: B2

Figure 6: Configuration change in Packrat. A request rate spike at
8 s increases latency under configuration B1. After reconfiguration
to B2 at 24 s, Packrat stabilizes and improves serving latency.
of 1.43 to 1.83× and a maximum speedup of 1.72 to 2.09×.

Gains compared to microbenchmarks. Packrat’s end-to-
end gains on TorchServe are higher than in the microbench-
marks. This is because the microbenchmarks only perform
inference; with Packrat on TorchServe, we measure end-
to-end impact on both inference and TorchServe’s serving
components as well. For each inference batch, a worker
executes a handler that consists of pre-processing, inference,
and post-processing. Since the pre- and post-processing are
usually not compute intensive, serving systems typically use
a single thread for them. However, multi-instance execution
parallelizes pre- and post-processing as well, resulting in
higher performance gains compared to microbenchmarks.

5.2.2 CONFIGURATION CHANGE LATENCY.

Finally, we evaluate the impact of configuration change
using the Inception-v3 model, with input arrival rates fol-
lowing a step function. All of the cores on a single CPU
socket are used for this experiment (T = 16). Figure 6
shows a zoomed-in timeline of model latency just before,
during, and just after a configuration change. The experi-
ment starts with the multi-instance configuration for B = 8,
which correctly corresponds to the load generated by the

8

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

client and produces the expected batch size. After some
time, the request rate spikes, changing the ideal batch size
for the workload to B = 64; however, we force the server
to not activate a change in batch size immediately (to ob-
serve the performance impact of doing this) and the server
continues to handle these batches with the B = 8 opti-
mized configuration for some time. Finally, the server starts
the configuration change for B = 64 and begins handling
requests with the new configuration.

There are five key takeaways in Figure 6: (1) Response la-
tencies are initially stable. (2) After 8 s, the client increases
the input request rate, and the server handles requests with
the old configuration until 18 s. The average latency in-
creases significantly due to queuing delays. (3) After 18 s,
the server starts the configuration change for B = 64. The
average latency per batch increases due to the configuration
change overhead until 23 s; the serving system does not stall
processing requests during reconfiguration. The configu-
ration change takes around 5 s. Most of this comes from
underlying systems (confirmed with a microbenchmark on
TorchServe). Given that such reconfigurations occur infre-
quently, we consider this overhead reasonable. (4) During
reconfiguration (18 s-23 s), the server handles requests with
the new configuration. The average latency per batch jumps
by 2-3× due to initialization overhead of the new configu-
ration and resource oversubscription, as both old and new
configurations are active. (5) After initialization completes,
the server handles all requests with the new configuration,
reducing latency by 1.54× over the old configuration.

6 Related Work
In this section, we describe related work relevant to Packrat.

Adaptive batching. Many recent works optimize batched
network request processing (Belay et al., 2014; Kaffes et al.,
2019; Prekas et al., 2017; Ousterhout et al., 2019) or packet
processing (Lévai et al., 2020; Bhardwaj et al., 2017) on
multi-core CPUs. Similar to Packrat, these systems pro-
cess up to B requests to completion before collecting the
next batch. These systems face a similar problem in how
they divide work across cores; for example, MICA (Lim
et al., 2014) showed that some workloads benefit from strict
per-core state and work partitioning, while others favor bal-
ancing request processing across cores and letting them all
synchronize access to shared state. Packrat’s techniques
may be useful for navigating that trade-off automatically.

Adaptive batching has also been used to serve DNN mod-
els more efficiently. Clipper uses adaptive batching to
maximize throughput subject to a compute processing la-
tency (Crankshaw et al., 2017). Nexus tries to schedule the
inference computations of multiple models onto a given set
of resources while respecting a provided throughput and la-

tency SLO (Shen et al., 2019). It determines the right batch
size for each model while obeying latency and throughput
constraints and simultaneously minimizing the number of re-
sources used. InferLine uses adaptive batching to determine
how best to satisfy latency SLOs for pipelines consisting
of one or more ML models (Crankshaw et al., 2020), and
others have used adaptive batching to support inference with
serverless systems (Ali et al., 2020). Triton and TorchServe
support adaptive batching and concurrent model serving on
the same GPU for better memory and compute utilization.

Configuration optimizations. McBench (Wang et al.,
2020) uses internal model knowledge and inputs to generate
TensorFlow configurations. TensorTuner (Hasabnis, 2018)
applies gradient-based optimization to TensorFlow’s thread-
ing; however, it does not partition an input batch across
instances, support reconfiguration, or target optimizing infer-
ence latency in the context of serving systems. TVM (Chen
et al., 2018) and Tensor Comprehension (Vasilache et al.,
2018) are compilers that generate optimized code for opera-
tors on various hardware backends. ParaX (Yin et al., 2021)
advocates for single-threaded inference to avoid stalls.

CPU-based optimizations. Many optimizations have
helped reduce inference latency of popular models. For
example, removing zero padding and using tensors with
dynamic shapes, using optimized matrix multiplication li-
braries, fusing memory-bound operators to increase arith-
metic intensity, and effectively using vector units (Dice &
Kogan, 2021; Le, 2020; Lv, 2019; Daghaghi et al., 2021; Liu
et al., 2019). Many such techniques are part of optimized
libraries such as Intel’s MKL that are used in PyTorch, and
they help bolster the baseline that Packrat improves over.

Production serving systems. Amazon SageMaker, Azure
ML, and TensorFlow Serving (Services, 2020; Microsoft
Azure, 2022; Olston et al., 2017) simplify model deploy-
ment, including serving various model versions with mini-
mal overhead. However, these systems do not consider how
models should be partitioned over a multi-core server, and
the effect of ⟨i, t, b⟩ configuration on end-to-end latency.

7 Conclusion
Minimizing CPU-based inference latency for a given work-
load is challenging. Pure inter- and intra-op parallelism
results in sub-optimal latency. Moreover, the best configura-
tion depends on the model and the CPU hardware. Packrat
solves this using an automated approach that combines selec-
tive profiling, an optimizer that estimates the performance
of unprofiled configurations and suggests configurations to
minimize latency, and performs online reconfigurations to
avoid serving downtime. Collectively, these let Packrat re-
alize latency and throughput speedups of 1.43× to 1.83×
averaged across batch sizes on a range of common DNNs.

9

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

Acknowledgments
Ankit Bhardwaj contributed to this work as a PhD student
at the University of Utah and during an internship at Mi-
crosoft Research. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS-2245999. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: A System for
Large-Scale Machine Learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 16), pp. 265–283, Savannah, GA, November 2016.
USENIX Association. ISBN 978-1-931971-33-1.

Ali, A., Pinciroli, R., Yan, F., and Smirni, E. BATCH:
Machine Learning Inference Serving on Serverless Plat-
forms with Adaptive Batching. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pp. 1–15, Atlanta, GA, 2020.
IEEE.

AMD. AMD Ryzen Threadripper PRO 5995WX. https:
//www.amd.com/en/product/11786, 2022.

Belay, A., Prekas, G., Klimovic, A., Grossman, S.,
Kozyrakis, C., and Bugnion, E. IX: A Protected Dat-
aplane Operating System for High Throughput and Low
Latency. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), pp. 49–65,
Broomfield, CO, October 2014. USENIX Association.
ISBN 978-1-931971-16-4.

Bhardwaj, A., Shree, A., Reddy, V. B., and Bansal, S. A
Preliminary Performance Model for Optimizing Software
Packet Processing Pipelines. In Proceedings of the 8th
Asia-Pacific Workshop on Systems, APSys ’17, New York,
NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450351973. doi: 10.1145/3124680.3124747.
URL https://doi.org/10.1145/3124680.3124747.

Chandra, R., Dagum, L., Kohr, D., Menon, R., Maydan, D.,
and McDonald, J. Parallel Programming in OpenMP.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2001.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin, C., and
Krishnamurthy, A. TVM: An Automated End-to-End Op-
timizing Compiler for Deep Learning. In 13th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), pp. 578–594, Carlsbad, CA, October
2018. USENIX Association. ISBN 978-1-939133-08-3.

Cho, M. J. and Saroufim, M. Grokking Py-
Torch Intel CPU Performance from First Princi-
ples. https://pytorch.org/tutorials/intermediate/
torchserve with ipex.html, 2022.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonza-
lez, J. E., and Stoica, I. Clipper: A Low-Latency Online
Prediction Serving System. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
17), pp. 613–627, Boston, MA, March 2017. USENIX
Association. ISBN 978-1-931971-37-9.

Crankshaw, D., Sela, G.-E., Mo, X., Zumar, C., Stoica,
I., Gonzalez, J., and Tumanov, A. InferLine: Latency-
Aware Provisioning and Scaling for Prediction Serving
Pipelines. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, pp. 477–491, New York,
NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450381376. doi: 10.1145/3419111.3421285.
URL https://doi.org/10.1145/3419111.3421285.

Daghaghi, S., Meisburger, N., Zhao, M., and Shrivastava,
A. Accelerating SLIDE Deep Learning on Modern
CPUs: Vectorization, Quantizations, Memory Optimiza-
tions, and More. Proceedings of Machine Learning and
Systems, 3:156–166, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding, 2019.

Dice, D. and Kogan, A. Optimizing Inference Performance
of Transformers on CPUs, 2021.

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J.,
Eide, E., Stoller, L., Hibler, M., Johnson, D., Webb, K.,
Akella, A., Wang, K., Ricart, G., Landweber, L., Elliott,
C., Zink, M., Cecchet, E., Kar, S., and Mishra, P. The
Design and Operation of CloudLab. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pp. 1–
14, Renton, WA, July 2019. USENIX Association. ISBN
978-1-939133-03-8.

10

https://www.amd.com/en/product/11786
https://www.amd.com/en/product/11786
https://doi.org/10.1145/3124680.3124747
https://pytorch.org/tutorials/intermediate/torchserve_with_ipex.html
https://pytorch.org/tutorials/intermediate/torchserve_with_ipex.html
https://doi.org/10.1145/3419111.3421285

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

Fréville, A. The Multidimensional 0–1 Knapsack Prob-
lem: An Overview. European Journal of Operational
Research, 155(1):1–21, 2004.

Gross, S. Small CPU Model Forward Pass Extremely
Slow. https://github.com/pytorch/pytorch/issues/
13757#issuecomment-437472174, 2018.

Hasabnis, N. Auto-Tuning TensorFlow Threading Model
for CPU Backend. In 2018 IEEE/ACM Machine Learning
in HPC Environments (MLHPC), pp. 14–25, Dallas, TX,
USA, 2018. IEEE. doi: 10.1109/MLHPC.2018.8638636.

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril,
U., Dzhulgakov, D., Fawzy, M., Jia, B., Jia, Y., Kalro,
A., Law, J., Lee, K., Lu, J., Noordhuis, P., Smelyan-
skiy, M., Xiong, L., and Wang, X. Applied Machine
Learning at Facebook: A Datacenter Infrastructure Per-
spective. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp.
620–629, Vienna, Austria, 2018. IEEE. doi: 10.1109/
HPCA.2018.00059.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, Las Vegas, NV, USA, 2016. IEEE. doi:
10.1109/CVPR.2016.90.

Intel. Intel AVX-512 Instructions. https:
//software.intel.com/en-us/articles/intel-avx-
512-instructions, 2017.

Intel. Intel Xeon Platinum 9282 Processor.
https://www.intel.com/content/www/us/en/
products/sku/194146/intel-xeon-platinum-9282-
processor-77m-cache-2-60-ghz/specifications.html,
2019.

Intel. Server Processors: Choosing the Right Server
CPU. https://www.intel.com/content/www/us/en/
products/docs/processors/xeon/server-processor-
overview.html, 2020.

Intel. Intel Architecture Instruction Set Ex-
tensions Programming Reference. https:
//www.intel.com/content/www/us/en/content-
details/671368/intel-architecture-instruction-set-
extensions-programming-reference.html, 2022.

Intel Extension for PyTorch. Launch Script Usage Guide.
https://intel.github.io/intel-extension-for-pytorch/
cpu/1.12.0+cpu/tutorials/performance tuning/
launch script.html, 2022.

Kaffes, K., Chong, T., Humphries, J. T., Belay, A., Mazières,
D., and Kozyrakis, C. Shinjuku: Preemptive Scheduling

for µ-second-scale Tail Latency. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pp. 345–360, Boston, MA, February 2019.
USENIX Association. ISBN 978-1-931971-49-2.

Kosaian, J., Phanishayee, A., Philipose, M., Dey, D., and
Vinayak, R. Boosting the Throughput and Accelerator
Utilization of Specialized CNN Inference Beyond In-
creasing Batch Size. In International Conference on
Machine Learning, pp. 5731–5741, Virtual Event, USA,
2021. PMLR.

Le, Q. N. How We Scaled Bert To Serve 1+ Billion
Daily Requests on CPUs. https://medium.com/
@quocnle/how-we-scaled-bert-to-serve-1-billion-
daily-requests-on-cpus-d99be090db26, 2020.

Lévai, T., Németh, F., Raghavan, B., and Retvari, G. Batchy:
Batch-scheduling Data Flow Graphs with Service-level
Objectives. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pp. 633–
649, Santa Clara, CA, February 2020. USENIX Associa-
tion. ISBN 978-1-939133-13-7.

Lim, H., Han, D., Andersen, D. G., and Kaminsky, M.
MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14),
pp. 429–444, Seattle, WA, April 2014. USENIX Associa-
tion. ISBN 978-1-931971-09-6.

Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V., and
Wang, Y. Optimizing CNN model inference on
CPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pp. 1025–1040, Renton, WA, July
2019. USENIX Association. ISBN 978-1-939133-03-
8. URL https://www.usenix.org/conference/atc19/
presentation/liu-yizhi.

Lv, T. Optimization for BERT Inference Performance
on CPU. https://medium.com/apache-mxnet/
optimization-for-bert-inference-performance-on-
cpu-3bb2413d376c, 2019.

Microsoft Azure. Azure Machine Learning.
https://azure.microsoft.com/en-us/services/
machine-learning/#product-overview, 2022.

NVIDIA Corporation. Triton Inference Server: An Opti-
mized Cloud and Edge Inferencing Solution, 2018. URL
https://github.com/triton-inference-server/server.

Olston, C., Li, F., Harmsen, J., Soyke, J., Gorovoy, K.,
Lao, L., Fiedel, N., Ramesh, S., and Rajashekhar, V.
TensorFlow-Serving: Flexible, High-Performance ML
Serving. In Workshop on ML Systems at NIPS 2017,
Long Beach, CA, 2017. Curran Associates Inc.

11

https://github.com/pytorch/pytorch/issues/13757#issuecomment-437472174
https://github.com/pytorch/pytorch/issues/13757#issuecomment-437472174
https://software.intel.com/en-us/articles/intel-avx-512-instructions
https://software.intel.com/en-us/articles/intel-avx-512-instructions
https://software.intel.com/en-us/articles/intel-avx-512-instructions
https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/194146/intel-xeon-platinum-9282-processor-77m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/server-processor-overview.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/server-processor-overview.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/server-processor-overview.html
https://www.intel.com/content/www/us/en/content-details/671368/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/www/us/en/content-details/671368/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/www/us/en/content-details/671368/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/www/us/en/content-details/671368/intel-architecture-instruction-set-extensions-programming-reference.html
https://intel.github.io/intel-extension-for-pytorch/cpu/1.12.0+cpu/tutorials/performance_tuning/launch_script.html
https://intel.github.io/intel-extension-for-pytorch/cpu/1.12.0+cpu/tutorials/performance_tuning/launch_script.html
https://intel.github.io/intel-extension-for-pytorch/cpu/1.12.0+cpu/tutorials/performance_tuning/launch_script.html
https://medium.com/@quocnle/how-we-scaled-bert-to-serve-1-billion-daily-requests-on-cpus-d99be090db26
https://medium.com/@quocnle/how-we-scaled-bert-to-serve-1-billion-daily-requests-on-cpus-d99be090db26
https://medium.com/@quocnle/how-we-scaled-bert-to-serve-1-billion-daily-requests-on-cpus-d99be090db26
https://www.usenix.org/conference/atc19/presentation/liu-yizhi
https://www.usenix.org/conference/atc19/presentation/liu-yizhi
https://medium.com/apache-mxnet/optimization-for-bert-inference-performance-on-cpu-3bb2413d376c
https://medium.com/apache-mxnet/optimization-for-bert-inference-performance-on-cpu-3bb2413d376c
https://medium.com/apache-mxnet/optimization-for-bert-inference-performance-on-cpu-3bb2413d376c
https://azure.microsoft.com/en-us/services/machine-learning/#product-overview
https://azure.microsoft.com/en-us/services/machine-learning/#product-overview
https://github.com/triton-inference-server/server

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

OpenMP. OpenMP Application Program In-
terface Version 5.1, November 2020. URL
https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.1.pdf .

Ousterhout, A., Fried, J., Behrens, J., Belay, A., and Bal-
akrishnan, H. Shenango: Achieving High CPU Effi-
ciency for Latency-sensitive Datacenter Workloads. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pp. 361–378, Boston,
MA, February 2019. USENIX Association. ISBN 978-1-
931971-49-2.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Pro-
ceedings of the 33rd International Conference on Neural
Information Processing Systems, Red Hook, NY, USA,
2019. Curran Associates Inc.

Prekas, G., Kogias, M., and Bugnion, E. ZygOS: Achiev-
ing Low Tail Latency for Microsecond-Scale Networked
Tasks. In Proceedings of the 26th Symposium on Op-
erating Systems Principles, SOSP ’17, pp. 325–341,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450350853. doi: 10.1145/
3132747.3132780. URL https://doi.org/10.1145/
3132747.3132780.

Quinnell, E., Swartzlander, E. E., and Lemonds, C. Floating-
Point Fused Multiply-Add Architectures. In 2007 Con-
ference Record of the Forty-First Asilomar Conference
on Signals, Systems and Computers, pp. 331–337, Pa-
cific Grove, CA, USA, Nov 2007. IEEE. doi: 10.1109/
ACSSC.2007.4487224.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language Models are Unsupervised
Multitask Learners. OpenAI blog, 1(8):9, 2019.

Schöne, R., Ilsche, T., Bielert, M., Gocht, A., and Hacken-
berg, D. Energy Efficiency Features of the Intel Skylake-
SP Processor and Their Impact on Performance. In 2019
International Conference on High Performance Comput-
ing and Simulation (HPCS), pp. 399–406, Dublin, Ireland,
2019. IEEE. doi: 10.1109/HPCS48598.2019.9188239.

Services, A. W. Amazon SageMaker for Infer-
ence, 2020. URL https://docs.aws.amazon.com/
sagemaker/latest/dg/deploy-model.html.

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Phili-
pose, M., Krishnamurthy, A., and Sundaram, R. Nexus:
A GPU Cluster Engine for Accelerating DNN-Based

Video Analysis. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP ’19,
pp. 322–337, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450368735.
doi: 10.1145/3341301.3359658. URL https://doi.org/
10.1145/3341301.3359658.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training Multi-Billion
Parameter Language Models using Model Parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Soifer, J., Li, J., Li, M., Zhu, J., Li, Y., He, Y.,
Zheng, E., Oltean, A., Mosyak, M., Barnes, C., Liu,
T., and Wang, J. Deep learning inference service at
microsoft. In 2019 USENIX Conference on Opera-
tional Machine Learning (OpML 19), pp. 15–17, Santa
Clara, CA, May 2019. USENIX Association. ISBN
978-1-939133-00-7. URL https://www.usenix.org/
conference/opml19/presentation/soifer.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and
Wojna, Z. Rethinking the Inception Architecture for
Computer Vision. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2818–
2826, Las Vegas, NV, USA, 2016. IEEE. doi: 10.1109/
CVPR.2016.308.

TorchServe Team. TorchServe. https://github.com/
pytorch/serve, 2019.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A.,
and Cohen, A. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstrac-
tions, 2018.

Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu,
Q., and Wang, Y. Intel Math Kernel Library, pp. 167–
188. Springer International Publishing, Cham, 2014. doi:
10.1007/978-3-319-06486-4 7.

Wang, Y. E., Wu, C.-J., Wang, X., Hazelwood, K., and
Brooks, D. Exploiting Parallelism Opportunities with
Deep Learning Frameworks. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 18(1):1–23,
2020.

WikiChip. Intel Xeon Gold 6142 Processor.
https://en.wikichip.org/wiki/intel/xeon gold/
6142#Frequencies, 2017.

Xianyi, Z. and Kroeker, M. OpenBLAS: An Optimized
BLAS Library. https://www.openblas.net/, 2017.

Yin, L., Zhang, Y., Zhang, Z., Peng, Y., and Zhao, P. ParaX:
Boosting Deep Learning for Big Data Analytics on Many-
Core CPUs. Proceedings of the VLDB Endowment, 14
(6):864–877, 2021.

12

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.1.pdf
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1145/3341301.3359658
https://www.usenix.org/conference/opml19/presentation/soifer
https://www.usenix.org/conference/opml19/presentation/soifer
https://github.com/pytorch/serve
https://github.com/pytorch/serve
https://en.wikichip.org/wiki/intel/xeon_gold/6142#Frequencies
https://en.wikichip.org/wiki/intel/xeon_gold/6142#Frequencies
https://www.openblas.net/

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

0 25000 50000 75000 100000
Bandwidth for 2:1(R:W) workload (MB/sec)

0
50

100
150
200
250

La
te

nc
y(

ns
)

Figure 7: Effect of memory bandwidth load on access latency.

A Expected versus Observed Speedup.
Figure 4 shows that while Packrat is able to obtain signifi-
cant latency benefits over the baseline, the attained speedup
for all models (across batch sizes) is less than Packrat’s
expected speedup – this can be seen in the gap between
the Expected Speedup and Actual Speedup lines. This
is because Packrat estimates the performance of configura-
tions composed of multiple instances running concurrently
based on profiling of individual instances run in isolation;
however, the actual performance of each instance when run
concurrently with other instances is lower since concurrent
execution creates some resource contention between the
instances. For example, running Packrat’s configuration in
practice creates more CPU and memory bandwidth inter-
ference compared to when profiling was done. Next, we
dive deeper to understand and account for these sources of
contention.

License-based downclocking. The first major source of
interference between instances is due to license-based CPU
downclocking (Schöne et al., 2019). License-based down-
clocking is a mechanism CPU vendors use to limit CPU
frequency when many cores use SIMD instructions con-
currently for sustained periods. This is done for energy
efficiency reasons (Schöne et al., 2019). For example,
even though the normal CPU frequency for an Intel Xeon
Gold 6142 is 2.6 GHz (Table 1), its frequency is down-
clocked to 2.2 GHz when all cores run SIMD instructions
concurrently (WikiChip, 2017). This lowers each core’s
performance by about 15%; we experimentally show this ex-
plains about half of the gap between expected and observed
speedups below.

Loaded memory latency. The second source of interfer-
ence is due to increased load on the memory controller.
Ideally, cores would be able to use any available memory
bandwidth without impacting other cores so long as mem-
ory bandwidth isn’t saturated; however, in practice, memory
bandwidth load created by one instance increases effective
memory access latency for other instances. Figure 7 shows
this effect by measuring memory access latency under vary-
ing memory bandwidth load; this microbenchmark uses a
2:1 read-write ratio similar to our inference workloads. The
increased memory latency explains the other half of the gap
between expected and observed speedups.

0

500

1000

1500

La
te

nc
y

(m
s) 1224

1397 1434
1607 1592

Thin(1)
Thin(1)+FPGen

Thin(1)+MemGen
Thin(1)+FPGen+MemGen

Thin

Figure 8: Breakdown of why multi-instance performance does
not match the performance predicted from profiling single-
instance latency (Thin(1)). When combined with a SIMD
(Thin(1)+FPGen) or a memory bandwidth load generator
(Thin(1)+MemGen) or both (Thin(1)+FPGen+MemGen) a
single instance’s performances slows to match that measured when
16 instances run together (Thin).

In-depth analysis for ResNet-50 microbenchmark. To
verify that downclocking and degraded memory access la-
tency explain the difference between expected and actual
performance, we perform an in-depth analysis using the
ResNet-50 microbenchmark. As shown in Figure 4 (a), due
to the overheads of the multi-instance execution the gap
between expected and realized speedups is between 12-15%.
To show the impact of license-based downclocking on in-
ference performance, we implement a SIMD load generator
that saturates the FMA units on a configurable number of
cores. We monitor the performance of a single thin instance
while we run the SIMD load generator on the cores that are
not being used for inference (Figure 8, Thin(1) + FPGen).

Similarly, to show the effect of increased memory latency
on inference performance, we implement a custom load
generator that generates a configurable amount of memory
bandwidth load. We use this to generate load that is about
equal to the load generated by i− 1 thin instances, which
simulates the memory load of running a thin instance con-
currently with i − 1 other instances (Figure 8, Thin(1) +
MemGen).

Figure 8 shows this analysis for a single configuration
(T = 16, B = 256). The optimizer recommends using
16 thin instances each with (t = 1, b = 16). The latency
for the baseline fat instance is 2664ms and for a single
(t = 1, b = 16) instance is 1224ms which is about a
54% reduction over the baseline. However, when we use
16 thin instances, the latency is 1600ms which is about
a 40% reduction over the baseline fat instance. So, the
actual latency reduction is 14% lower than the expected
reduction. The goal of this analysis is to understand the
gap between single thin instance (Thin(1)) and multiple
thin instances (Thin) as shown in Figure 8. The impact
of license-based downclocking increases the latency of a
single thin instance to 1397ms (Thin(1) + FPGen) and
the impact of increased memory latency degrades the la-
tency of Thin(1) to 1434ms (Thin(1) + MemGen); these

13

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

Table 2: The best ⟨i, t, b⟩ configurations identified by Packrat’s
Optimizer for BERT with different batch sizes for two deployments
with T = 16 and T = 14 respectively.

Batch Size (B) Cores (T = 16) Cores (T = 14)

8 ⟨2, 8, 4⟩ ⟨2, 7, 4⟩
16 ⟨4, 4, 4⟩ ⟨1, 6, 8⟩, ⟨2, 4, 4⟩
32 ⟨4, 4, 8⟩ ⟨1, 6, 16⟩, ⟨2, 4, 8⟩
64 ⟨4, 4, 16⟩ ⟨1, 6, 32⟩, ⟨2, 4, 16⟩

128 ⟨4, 4, 32⟩ ⟨2, 7, 64⟩
256 ⟨8, 2, 32⟩ ⟨2, 3, 64⟩, ⟨4, 2, 32⟩
512 ⟨8, 2, 64⟩ ⟨2, 3, 128⟩, ⟨4, 2, 64⟩
1024 ⟨8, 2, 128⟩ ⟨2, 3, 256⟩, ⟨4, 2, 128⟩

are 173ms and 210ms higher (worse) than the isolated sin-
gle thin-instance latency. As reference points in Figure 7,
Thin(1) generates memory traffic of around 3 GB/s and
Thin generates around 50 GB/s. If we add all three over-
heads, we get around 1600ms, which is the latency of mul-
tiple thin instances latency (Thin). Hence, the combination
of license-based downclocking and increased memory ac-
cess latency explains the discrepancy between the expected
latency estimated from profiling thin instances in isolation
and the actual latency in practice.

Why not model resource interference in the optimizer?
Packrat’s Optimizer does not model the interference de-
scribed in §A. While designing Packrat, we hypothesized
that since this interference affects all configurations in a
similar way, modeling interference wouldn’t change the
selected configurations.

To validate this hypothesis, we did two things. For select
models, we looked at the gap between actual and expected
speedup (e.g., in Figure 4). In all cases, actual is a constant
factor slower than expected (reassuringly, the same constant
factor across models). Next, for these models, we reran the
Optimizer’s DP taking into account the estimated interfer-
ence performance penalty. The resulting configurations (and
actual performance) were identical to the configurations se-
lected when not accounting for interference. The reason is
that if all profiled performance measurements are penalized
by multiplying them by some constant c < 1, then their
relative order doesn’t change. The equation for opt[t, b] still
makes the same choices at each step even if all costs are
multiplied by the same c. Packrat could be extended to
incorporate modeled interference, but we have yet to find a
case where doing so changes the chosen configuration.

B Non-Uniform Instances in Packrat.
For most of the benchmarks, the optimizer generates a uni-
form ⟨i, t, b⟩ configuration where each thin instance has
the same number of cores and batch size. This is because
the number of threads (T) and batch size (B) used in most
benchmarks are powers of two. In real-world scenarios,
number of cores and batch sizes may not always be pow-

Table 3: Additional server hardware configurations to demonstrate
Packrat’s performance gains beyond the primary testbed.

Server 1 CPU: 16-core AMD EPYC 7302P at 3.0 GHz
RAM: 128 GB (8×16 GB DDR4-3200)

Server 2 CPU: 28-core Intel Xeon 5512U at 2.1 GHz
RAM: 128 GB (8×16 GB DDR5-4800)

1.0
1.3
1.6
1.9

16 64 256 1024
1.0
1.3
1.6
1.9

16 64 256 1024
Batch Size

Sp
ee

du
p

ov
er

 F

at
 In

st
an

ce

(a) ResNet-50 (b) Inception-V3

(c) GPT-2 (d) BERT

Actual Speedup Expected Speedup

Figure 9: Multi-instance performance on an EPYC machine.

ers of two; hence, we investigate the performance in these
cases here. We show the impact of such configurations on
the inference latency and throughput. To conserve space,
here we show the results only for the BERT model. Results
for other models are similar. Table 2 shows the ⟨i, t, b⟩
configurations for different batch sizes for T = 16 and T =
14. For example, for B = 16, the configuration is (i = 4,
t = 4, b = 4) for T = 16; it is (i = 1, t = 6, b = 8) and
(i = 2, t = 4, b = 4) for T = 14. So, the final configura-
tion includes a mix of different thin instance types. Similar
configurations are generated for other batch sizes. For such
cases, Packrat’s optimizer chooses configurations where the
latency of different instances types are similar, resulting in
lower overall latency while satisfying Equations 1 and 2.

C Evaluating Packrat on Different Machines
Packrat is designed to be a general-purpose system for differ-
ent machine configurations. To demonstrate its performance
across different hardware configurations, we evaluate Pack-
rat on two additional Cloudlab (Duplyakin et al., 2019) ma-
chines with different CPU architectures and memory config-
urations (as shown in Table 3). The first machine is an AMD
EPYC 7302P with 16 cores and 128 GB of RAM (Cloud-
lab c6525-25g), while the second machine is an Intel Xeon
5512U with 28 cores and 128 GB of RAM (Cloudlab c6620).
Both machines have 8×16 GB of DDR4-3200 and DDR5-
4800 memory, respectively. We run the same set of mi-
crobenchmarks as in §5.1 on these machines.

Figures 9 shows the results for the AMD EPYC machine.
While Packrat consistently outperforms the baseline, the
performance varies in two ways compared to the primary
setup. First, the baseline and the Packrat configurations

14

Auto-reconfiguration for Latency Minimization in CPU-based DNN Serving

1.0
1.3
1.6
1.9
2.2

16 64 256 1024
1.0
1.3
1.6
1.9
2.2

16 64 256 1024
Batch Size

Sp
ee

du
p

ov
er

 F

at
 In

st
an

ce
(a) ResNet-50 (b) Inception-V3

(c) GPT-2 (d) BERT

Actual Speedup Expected Speedup

Figure 10: Multi-instance performance on an Emerald Rapids
machine.

achieve lower performance than the primary setup. Second,
the difference between expected and actual vanishes for
most models and batch sizes because the memory bandwidth
is not a bottleneck on these machines (except for a few large
batches), and AMD EPYC does not support AVX512. Thus,
the CPU does not experience any downclocking.

Figure 10 shows the results for the Emerald Rapids ma-
chine. The absolute performance is higher than the EPYC
machine. These machines also have a higher memory band-
width, and improved licensed-based downclocking support
for AVX512 instructions. As a result, the difference be-
tween expected and actual is minimal as compared to the
primary setup. Overall, Packrat consistently outperforms the
baseline on both machines across models and batch sizes.

15

